Shielded Power Inductors XFL2006

- Lowest profile, ultra-miniature, shielded power inductor
- Soft saturation makes them ideal for VRM/VRD applications.

Designer’s Kit C478 contains 5 each of all values

Core material Composite

Core and winding loss See www.coilcraft.com/coreloss

Environmental RoHS compliant, halogen free

Terminations RoHS compliant tin-silver-copper (96.5/3/0.5) over tin over nickel over silver-platinum. Other terminations available.

Weight 10 – 13 mg

Ambient temperature -40°C to +85°C with (40°C rise) Irms current.

Maximum part temperature +125°C (ambient + temp rise). Derating.

Storage temperature Component: -55°C to +125°C. Tape and reel packaging: -55°C to +80°C

Resistance to soldering heat Max three 40 second refloWS at +260°C, parts cooled to room temperature between cycles

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

Failures in Time (FIT) / Mean Time Between Failures (MTBF) 38 per billion hours / 26,315,789 hours, calculated per Telcordia SR-332

Packaging 2000/7″ reel; 7500/13″ reel Plastic tape: 8 mm wide, 0.28 mm thick, 4 mm pocket spacing, 0.76 mm pocket depth

PCB washing Tested to MIL-STD-202 Method 215 plus an additional aqueous wash. See Doc787_PCB_Washing.pdf.

<table>
<thead>
<tr>
<th>Part number</th>
<th>Inductance<sup>2</sup> (±20% [µH])</th>
<th>DCR (Ohms)<sup>3</sup></th>
<th>SRF typ<sup>4</sup> (MHz)</th>
<th>I<sub>sat</sub> (A)<sup>5</sup> 10% drop</th>
<th>I<sub> rms</sub> (A)<sup>6</sup> 20% drop</th>
<th>I<sub> rms</sub> (A)<sup>6</sup> 30% drop</th>
<th>20°C rise</th>
<th>40°C rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>XFL2006-102ME_</td>
<td>1.0</td>
<td>0.153</td>
<td>0.169</td>
<td>170</td>
<td>0.71</td>
<td>0.90</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>XFL2006-222ME_</td>
<td>2.2</td>
<td>0.278</td>
<td>0.306</td>
<td>110</td>
<td>0.49</td>
<td>0.69</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>XFL2006-332ME_</td>
<td>3.3</td>
<td>0.460</td>
<td>0.506</td>
<td>88</td>
<td>0.42</td>
<td>0.56</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>XFL2006-472ME_</td>
<td>4.7</td>
<td>0.665</td>
<td>0.732</td>
<td>68</td>
<td>0.31</td>
<td>0.44</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>XFL2006-562ME_</td>
<td>5.6</td>
<td>0.75</td>
<td>0.825</td>
<td>61</td>
<td>0.30</td>
<td>0.43</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>XFL2006-682ME_</td>
<td>6.8</td>
<td>0.92</td>
<td>1.02</td>
<td>57</td>
<td>0.26</td>
<td>0.35</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>XFL2006-822ME_</td>
<td>8.2</td>
<td>1.08</td>
<td>1.19</td>
<td>51</td>
<td>0.24</td>
<td>0.33</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>XFL2006-103ME_</td>
<td>10.0</td>
<td>1.27</td>
<td>1.40</td>
<td>45</td>
<td>0.24</td>
<td>0.31</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>XFL2006-153ME_</td>
<td>15.0</td>
<td>2.02</td>
<td>2.22</td>
<td>37</td>
<td>0.19</td>
<td>0.25</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>XFL2006-223ME_</td>
<td>22.0</td>
<td>2.78</td>
<td>3.06</td>
<td>30.5</td>
<td>0.15</td>
<td>0.205</td>
<td>0.240</td>
<td></td>
</tr>
<tr>
<td>XFL2006-333ME_</td>
<td>33.0</td>
<td>4.45</td>
<td>4.90</td>
<td>24.0</td>
<td>0.110</td>
<td>0.150</td>
<td>0.180</td>
<td></td>
</tr>
<tr>
<td>XFL2006-473ME_</td>
<td>47.0</td>
<td>5.60</td>
<td>6.16</td>
<td>19.5</td>
<td>0.090</td>
<td>0.130</td>
<td>0.155</td>
<td></td>
</tr>
<tr>
<td>XFL2006-563ME_</td>
<td>56.0</td>
<td>6.65</td>
<td>7.32</td>
<td>16.5</td>
<td>0.085</td>
<td>0.120</td>
<td>0.145</td>
<td></td>
</tr>
<tr>
<td>XFL2006-683ME_</td>
<td>68.0</td>
<td>8.50</td>
<td>9.35</td>
<td>16.0</td>
<td>0.080</td>
<td>0.115</td>
<td>0.135</td>
<td></td>
</tr>
<tr>
<td>XFL2006-823ME_</td>
<td>82.0</td>
<td>9.25</td>
<td>10.18</td>
<td>13.5</td>
<td>0.065</td>
<td>0.090</td>
<td>0.115</td>
<td></td>
</tr>
<tr>
<td>XFL2006-104ME_</td>
<td>100.0</td>
<td>11.10</td>
<td>12.25</td>
<td>13.0</td>
<td>0.065</td>
<td>0.090</td>
<td>0.115</td>
<td></td>
</tr>
</tbody>
</table>

1. When ordering, please specify termination and packaging codes:

XFL2006-823MEC

Termination: E = RoHS compliant tin-silver-copper (96.5/3/0.5) over tin over nickel over silver-platinum.

Special order: S = non-RoHS tin-lead (63/37).

Packaging: C = 7” machine-ready reel. EIA-481 embossed plastic tape (2000 parts per full reel).

B = Less than full reel. In tape, but not machine ready. To have a leader and trailer added ($25 charge), use code letter C instead.

D = 13” machine-ready reel. EIA-481 embossed plastic tape. Factory order only, not stocked (7500 parts per full reel).

2. Inductance tested at 1 MHz, 0.1 Vrms, 0 Adc.

3. DCR measured on a micro-ohmmeter.

4. SRF measured using Agilent/HP 4395A or equivalent.

5. DC current at 25°C that causes the specified inductance drop from its value without current. Click for temperature derating information.

6. Current that causes the specified temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings. Click for temperature derating information.

7. Electrical specifications at 25°C. Refer to Doc 362 “Soldering Surface Mount Components” before soldering.
XFL2006 Shielded Power Inductor Series

L vs Current

Inductance (µH) vs Current (A)

- **1.0 µH**
- **2.2 µH**
- **3.3 µH**
- **4.7 µH**
- **5.6 µH**
- **6.8 µH**
- **8.2 µH**
- **10 µH**
- **15 µH**
- **22 µH**
- **33 µH**
- **47 µH**

This product may not be used in medical or high-risk applications without prior Coilcraft approval.
Specification subject to change without notice.
Please check web site for latest information.
XFL2006 Shielded Power Inductor Series

L vs Current

Typical L vs Frequency

![Graphs showing L vs Current and L vs Frequency](image)

Recommended Land Pattern

Tape and reel orientation

*For optional tin-lead and tin-silver-copper terminations, dimensions are for the mounted part. Dimensions before mounting can be an additional 0.005 inch / 0.13 mm.

Dimensions are in inches / mm