SLC/SLR Series

High current, low DCR power inductors

Key

1. Find your required inductance in the far left column.
2. Scan the row until you find the desired current rating (bold number); parts from there to the right meet your requirement.
3. Read up to see the Coilcraft product series and dimensions.

<table>
<thead>
<tr>
<th>Base (mm)</th>
<th>SLC7530S Shielded (Single)</th>
<th>SLC7530D Shielded (Dual)</th>
<th>SLC7649 Shielded</th>
<th>SLC1049 Shielded</th>
<th>SLR1050 Shielded</th>
<th>SLR1065 Shielded</th>
<th>SLR1070 Shielded</th>
<th>SLR1075 Shielded</th>
<th>SLC1175 Shielded</th>
<th>SLC1480 Shielded</th>
<th>SLR1190 Shielded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (mm)</td>
<td>3</td>
<td>3.00</td>
<td>4.96</td>
<td>5.16</td>
<td>4.95</td>
<td>6.60</td>
<td>7</td>
<td>7.40</td>
<td>7.2</td>
<td>8.00</td>
<td>9</td>
</tr>
<tr>
<td>Inductance</td>
<td>0.036 µH</td>
<td></td>
</tr>
<tr>
<td>0.050 µH</td>
<td>50</td>
<td>0.13</td>
<td>84</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.064 µH</td>
<td>32</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.070 µH</td>
<td>65</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>0.150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.075 µH</td>
<td>61</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.082 µH</td>
<td>22</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.085 µH</td>
<td>86</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10 µH</td>
<td>42</td>
<td>0.23</td>
<td>78</td>
<td>0.39</td>
<td></td>
<td></td>
<td>112</td>
<td>0.150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.11 µH</td>
<td>33</td>
<td>0.17</td>
<td>65</td>
<td>0.39</td>
<td>86</td>
<td>0.48</td>
<td>86</td>
<td>0.29</td>
<td>88</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>0.12 µH</td>
<td>27</td>
<td>0.17</td>
<td>30</td>
<td>0.23</td>
<td>51</td>
<td>0.39</td>
<td></td>
<td>72</td>
<td>0.29</td>
<td>76</td>
<td>0.24</td>
</tr>
<tr>
<td>0.13 µH</td>
<td>64</td>
<td>0.48</td>
<td>64</td>
<td>0.29</td>
<td>65</td>
<td>0.29</td>
<td>63</td>
<td>0.24</td>
<td>90</td>
<td>0.150</td>
<td></td>
</tr>
<tr>
<td>0.14 µH</td>
<td>112</td>
<td>0.150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15 µH</td>
<td>75</td>
<td>0.48</td>
<td>78</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.17 µH</td>
<td>25.5</td>
<td>0.23</td>
<td>51</td>
<td>0.29</td>
<td>53</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18 µH</td>
<td>35</td>
<td>0.48</td>
<td>51</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>0.24</td>
</tr>
<tr>
<td>0.19 µH</td>
<td>21</td>
<td>1.00</td>
<td>51</td>
<td>0.29</td>
<td>53</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td>0.150</td>
</tr>
<tr>
<td>0.20 µH</td>
<td>35</td>
<td>0.39</td>
<td>51</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td>0.43</td>
</tr>
<tr>
<td>0.22 µH</td>
<td>25.5</td>
<td>0.23</td>
<td>51</td>
<td>0.48</td>
<td>49</td>
<td>0.29</td>
<td>49</td>
<td>0.24</td>
<td>67</td>
<td>0.150</td>
<td>72</td>
</tr>
<tr>
<td>0.23 µH</td>
<td>38</td>
<td>0.29</td>
<td>49</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
<td>0.43</td>
</tr>
<tr>
<td>0.25 µH</td>
<td>61</td>
<td>0.150</td>
<td>41</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>0.43</td>
</tr>
<tr>
<td>0.27 µH</td>
<td>33</td>
<td>0.29</td>
<td>41</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>0.43</td>
</tr>
<tr>
<td>0.28 µH</td>
<td>32</td>
<td>0.48</td>
<td>31</td>
<td>0.29</td>
<td>36</td>
<td>0.29</td>
<td>34</td>
<td>0.24</td>
<td>52</td>
<td>0.150</td>
<td>52</td>
</tr>
<tr>
<td>0.30 µH</td>
<td>32</td>
<td>0.48</td>
<td>31</td>
<td>0.29</td>
<td>36</td>
<td>0.29</td>
<td>34</td>
<td>0.24</td>
<td>52</td>
<td>0.150</td>
<td>52</td>
</tr>
<tr>
<td>0.31 µH</td>
<td>48</td>
<td>0.150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 µH</td>
<td>11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.36 µH</td>
<td>11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.37 µH</td>
<td>8.0</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40 µH</td>
<td>8.0</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.44 µH</td>
<td>35</td>
<td>0.150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.56 µH</td>
<td>41</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.68 µH</td>
<td>35</td>
<td>0.150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70 µH</td>
<td>41</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For free evaluation samples or to view other Coilcraft power inductors, visit www.coilcraft.com

Specifications subject to change without notice. Document 373S-1 Revised 03/16/18
Plug into these powerful inductor selection tools on Coilcraft’s web site

Power Inductor Finder
www.coilcraft.com/finder
Use our new Power Inductor Finder tool to identify and compare inductors based on your exact requirements: current, ripple, frequency, ambient temperature, etc. Search across a range of inductances. Optimize the results for size, DCR, price or any other parameter. Then graph the inductance vs. current at temperature.

IC / Inductor Matching Tool
www.coilcraft.com/ic
Use this handy tool to find Coilcraft products suitable for use with 1000s of IC reference designs. Get a sortable list including our newest products that often perform better and cost less than those on the application note.

Converter Inductor Calculator
www.coilcraft.com/calc
An invaluable tool for anyone designing buck, boost, buck-boost or SEPIC converters. Obtain a detailed list of all suitable Coilcraft components that meet your specified parameters and inductor specifications.

Analyze+Compare Tool
www.coilcraft.com/analyze
Quickly determine the losses you can expect under your specific operating conditions. Analyze a single inductor value or compare the losses of up to six parts to help you find the perfect part for your design. Explore losses further with Losses vs. Ripple and Losses vs. Frequency graphs.