Common Mode Chokes – MSD1048

- Only 4.8 mm high and 10.3 mm square
- Ideal for use in both power line and signal line applications
- Common- and differential-mode filtering in a single device
- Up to 200 MHz differential mode cutoff frequency
- Can be used as coupled inductors for SEPIC applications

Core material: Ferrite
Weight: 1.5–1.8 g
Environmental: RoHS compliant, halogen free
Terminations: RoHS compliant matte tin over nickel over phos bronze. Other terminations available at additional cost.
Ambient temperature: –40°C to +85°C with Irms current.
Maximum part temperature: +125°C (ambient + temp rise).
Storage temperature: Component: –40°C to +125°C.
Tape and reel packaging: –40°C to +80°C
Winding-to-winding isolation: 200 Vrms, one minute
Resistance to soldering heat: Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles
Moisture Sensitivity Level (MSL): 1 (unlimited floor life at <30°C / 85% relative humidity)
Failures in Time (FIT) / Mean Time Between Failures (MTBF): 38 per billion hours / 26,315,789 hours, calculated per Telcordia SR-332
Packaging: 800/13” reel. Plastic tape: 24 mm wide, 0.35 mm thick, 16 mm pocket spacing, 5.1 mm pocket depth

Recommended Land Pattern

Dimensions are in inches / mm

For optional tin-lead and tin-silver-copper terminations, dimensions are for the mounted part. Dimensions before mounting can be an additional 0.012 inch (0.3 mm).

Coilcraft
www.coilcraft.com

US +1-847-639-6400 sales@coilcraft.com
UK +44-1236-730595 sales@coilcraft-europe.com
Taiwan +886-2-2264 3646 sales@coilcraft.com.tw
China +86-21-6218 8074 sales@coilcraft.com.cn
Singapore +65-6484 8412 sales@coilcraft.com.sg

© Coilcraft Inc. 2017
This product may not be used in medical or high risk applications without prior Coilcraft approval. Specification subject to change without notice. Please check web site for latest information.
Common Mode Chokes – MSD1048 Series

<table>
<thead>
<tr>
<th>Partnumber</th>
<th>Common mode impedance max (kOhms)</th>
<th>Cutoff frequency (MHz)</th>
<th>Inductance (µH)</th>
<th>DCR max (Ohms)</th>
<th>Isolation (Vrms)</th>
<th>I rms (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSD1048-222NE_</td>
<td>3.49 @ 71 MHz</td>
<td>200</td>
<td>1.54</td>
<td>2.2</td>
<td>0.019</td>
<td>200</td>
</tr>
<tr>
<td>MSD1048-103ME_</td>
<td>10.1 @ 27 MHz</td>
<td>97</td>
<td>8.00</td>
<td>10</td>
<td>0.053</td>
<td>200</td>
</tr>
<tr>
<td>MSD1048-223ME_</td>
<td>17.0 @ 17 MHz</td>
<td>44</td>
<td>17.6</td>
<td>22</td>
<td>0.098</td>
<td>200</td>
</tr>
<tr>
<td>MSD1048-473ME_</td>
<td>32.4 @ 12 MHz</td>
<td>29</td>
<td>37.6</td>
<td>47</td>
<td>0.208</td>
<td>200</td>
</tr>
<tr>
<td>MSD1048-683ME_</td>
<td>52.2 @ 9.3 MHz</td>
<td>38</td>
<td>54.4</td>
<td>68</td>
<td>0.297</td>
<td>200</td>
</tr>
<tr>
<td>MSD1048-104ME_</td>
<td>58.3 @ 7.4 MHz</td>
<td>19</td>
<td>80.0</td>
<td>100</td>
<td>0.387</td>
<td>200</td>
</tr>
<tr>
<td>MSD1048-224KE_</td>
<td>87.9 @ 5.0 MHz</td>
<td>16</td>
<td>198</td>
<td>220</td>
<td>0.840</td>
<td>200</td>
</tr>
</tbody>
</table>

1. When ordering, please specify termination and packaging codes:

 MSD1048-224KE

 Termination:
 - **E** = RoHS compliant matte tin over nickel over phos bronze.
 - Special order: **Q** = RoHS tin-silver-copper (95.5/4/0.5) or **P** = non-RoHS tin-lead (63/37).

 Packaging:
 - **D** = 13” machine-ready reel. EIA-481 embossed plastic tape. (800 parts per full reel).
 - **B** = Less than full reel. In tape, but not machine ready.

 To have a leader and trailer added ($25 charge), use code letter D instead.

2. Frequency at which the differential mode attenuation equals −3 dB

3. Inductance shown for each winding, measured at 100 kHz, 0.1 Vrms, 0 Adc on an Agilent/HP 4284A LCR meter or equivalent.

4. DCR is for each winding.

5. Interwinding isolation (hipot) tested for one minute.

6. Current that causes a 40°C temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings.

Common Mode Chokes – MSD1048 Series

Typical Attenuation (Ref: 50 Ohms)

Typical Impedance vs Frequency