Flyback/Buck Transformer for TI UCC25230 Switching Converter

The MA5401-AE was developed for use with the Texas Instruments UCC25230 Switching Converter (12 – 100 V input, 0.20 A output).

It is designed to meet UL60950 Functional Isolation for working voltage up to 210 V peak.

With 1000 Vrms (1500 Vdc) hipot and a small package size, this transformer is ideal for use in high density isolated circuit applications.

It provides tight coupling (k>0.99), high inductance and excellent current handling in a rugged, low cost part.

---

Core material  Ferrite
Environmental  RoHS compliant, halogen free
Terminations  RoHS compliant silver-palladium-platinum-glass frit. Other terminations available at additional cost.
Weight  210 – 225 mg
Ambient temperature  −40°C to +125°C (Ambient temperature + self-heating must not exceed a part temperature of 125°C. See notes for calculating temperature rise due to self-heating.)
Storage temperature  Component: −40°C to +125°C. Tape and reel packaging: −40°C to +80°C
Winding to winding isolation  1500 Vdc
Resistance to soldering heat  Max three 40 second reflo ws at +260°C, parts cooled to room temperature between cycles
Moisture Sensitivity Level (MSL)  1 (unlimited floor life at <30°C / 85% relative humidity)
Failures in Time (FIT) / Mean Time Between Failures (MTBF)  38 per billion hours / 26,315,789 hours, calculated per Telcordia SR-332
Packaging  750/7” reel; 2500/13” reel Plastic tape: 12 mm wide, 0.32 mm thick, 8 mm pocket spacing, 3.1 mm pocket depth
Recommended pick and place nozzle  OD: 5 mm; ID: ≤2.5 mm
PCB washing  Tested with pure water or alcohol only. For other solvents, see Doc787_PCB_Washing.pdf.

---

Dimensions are in inches

---

Document 924B-1  Revised 09/17/12
© Coilcraft Inc. 2013
This product may not be used in medical or high risk applications without prior Coilcraft approval.
Specification subject to change without notice.
Please check web site for latest information.
### MA5401-AE for TI UCC25230 Switching Converter

<table>
<thead>
<tr>
<th>Part number</th>
<th>Inductance ±20% (µH)</th>
<th>DCR max (Ohms)</th>
<th>SRF typ (MHz)</th>
<th>Coupling coefficient</th>
<th>Leakage inductance typ (µH)</th>
<th>Isat (A)</th>
<th>Hipot (Vdc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA5401-AE</td>
<td>220</td>
<td>5.25</td>
<td>6.5</td>
<td>&gt;0.99</td>
<td>0.541</td>
<td>0.16</td>
<td>1500</td>
</tr>
</tbody>
</table>

1. When ordering, please specify **packaging** code:
   - **C** = 7" machine-ready reel, EIA-481 embossed plastic tape (750 parts per full reel).
   - **B** = Less than full reel, in tape, but not machine ready. To have a leader and trailer added ($25 charge), use code letter D instead.
   - **D** = 13" machine-ready reel, EIA-481 embossed plastic tape. Factory order only, not stocked (2500 parts per full reel).

2. Inductance shown for each winding, measured at 100 kHz, 0.1 Vrms, 0 Adc on an Agilent/HP 4284A LCR meter or equivalent. When leads are connected in parallel, inductance is the same value. When leads are connected in series, inductance is four times the value.

3. DCR is for each winding. When leads are connected in parallel, DCR is half the value. When leads are connected in series, DCR is twice the value.

4. SRF measured using an Agilent/HP 4191A or equivalent. When leads are connected in parallel, SRF is the same value.

5. Leakage Inductance is for L1 and is measured with L2 shorted.

6. DC current, at which the inductance drops the specified amount from its value without current. It is the sum of the current flowing in both windings.

7. Hipot production tested 100% at 1800 Vdc for 2 seconds.

8. Electrical specifications at 25°C. Refer to Doc 362 “Soldering Surface Mount Components” before soldering.

### Temperature rise calculation based on current

Winding power loss = \((I_{L1}^2 + I_{L2}^2) \times DCR\) in Watts (W)

Temperature rise = Winding power loss \times \frac{157°C}{W}

**Equal current in each winding (0.15 A):**

Winding power loss = \((0.15^2 + 0.15^2) \times 5.25 = 0.236\) W

Temperature rise = \(0.236 W \times \frac{157°C}{W} = 37°C\)

**Unequal current \((I_{L1} = 0.21 A, I_{L2} = 0.06 A)\):**

Winding power loss = \((0.21^2 + 0.06^2) \times 5.25 = 0.250\) W

Temperature rise = \(0.250 W \times \frac{157°C}{W} = 39.3°C\)

### Typical Current Derating

![Typical Current Derating](image)

**Typical L vs Frequency**

![Typical L vs Frequency](image)

**Typical L vs Current**

![Typical L vs Current](image)