SMT Data Line EMI Filter CCDLF

1. When ordering, please specify termination and packaging codes:
 - **Termination** L = RoHS compliant tin-silver-copper over silver-platinum
 - **Special order** S = non-RoHS tin-lead (63/37)
 - **Packaging** D = 13″ machine ready reel. EIA-481 embossed plastic tape (1000 parts per full reel).
 - **B** = Less than full reel. In tape, but not machine ready.
 - To have a leader and trailer added ($25 charge), use code letter D instead.

2. Frequency at which the differential mode attenuation equals −3 dB
3. Inductance shown for each winding, measured at 1 MHz
4. DCR is for each winding.
5. Innerwinding isolation (hipot) tested for one minute.
6. Current rating is for each line.

Refer to Doc 362 “Soldering Surface Mount Components” before soldering.

Part number

<table>
<thead>
<tr>
<th>Part number</th>
<th>Lines</th>
<th>Common mode peak impedance (Ohms)</th>
<th>Cutoff frequency (GHz)</th>
<th>Inductance min (µH)</th>
<th>DCR max (mOhms)</th>
<th>Isolation (Vrms)</th>
<th>Current (mAdc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCDLF 10000L</td>
<td>10</td>
<td>523.54 at 43 MHz</td>
<td>0.043</td>
<td>5</td>
<td>250</td>
<td>300</td>
<td>100</td>
</tr>
</tbody>
</table>

Dimensions

- **0.360 max.**
- **0.360 max.**
- **0.060 ref**
- **0.040 typ**
- **0.360 max.**
- **0.170 max**
- **0.050 cen**
- **0.030 cen**
- **0.030 cen**
- **0.050 cen**
- **0.170 max**

Recommended Land Pattern

Dot indicates pin 1

Contact Information

US +1-847-639-6400 sales@coilcraft.com
UK +44-1236-730595 sales@coilcraft-europe.com
Taiwan +886-2-2264 3646 sales@coilcraft.com.tw
China +86-21-6218 8074 sales@coilcraft.com.cn
Singapore +65-6484 8412 sales@coilcraft.com.sg

© Coilcraft Inc. 2017
This product may not be used in medical or high risk applications without prior Coilcraft approval.
Specification subject to change without notice.
Please check web site for latest information.
CCDLF 10000 Surface Mount Data Line EMI Filter

Attenuation (Ref: 50 Ohms)

- Common mode
- Differential mode

Impedance vs Frequency

- Common mode
- Differential mode