Shielded Power Inductors – XGL5030

- Industry’s lowest DCR and ultra low AC losses over a wide frequency range
- AEC-Q200 Grade 1 (-40°C to +125°C)
- Superior current handling with soft saturation characteristics
- Wide inductance range ~ 0.16 to 18 µH
- Designer’s Kit C492 contains 3 of each part

Core material
Composite

Core and winding loss See www.coilcraft.com/coreloss

Environmental RoHS compliant, halogen free
Terminations RoHS compliant tin-silver (96.5/3.5) over copper. Other terminations available at additional cost.

Weight: 0.46 – 0.52 g
Operating voltage: 0 – 80 V
Ambient temperature -40°C to +125°C with (40°C rise) Irms current.
Maximum part temperature +165°C (ambient + temp rise). Derating.
Storage temperature Component: -55°C to +165°C. Tape and reel packaging: -55°C to +80°C

Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)
Failures in Time (FIT) / Mean Time Between Failures (MTBF)
0.48 per billion hours / 2.08E+09 hours, calculated per Telcordia SR-332

PCB washing Tested to MIL-STD-202 Method 215 plus an additional aqueous wash. See Doc787_PCB_Washing.pdf.

Typical L vs Frequency

Packaging 400/7” reel; 1500/13” reel Plastic tape: 16 mm wide, 0.30 mm thick, 12 mm pocket spacing, 3.18 mm pocket depth
Shielded Power Inductors – XGL5030

<table>
<thead>
<tr>
<th>Part number</th>
<th>Inductance (±20% (µH) typ</th>
<th>DCR (mOhms)</th>
<th>SRF typ (MHz)</th>
<th>Isat (A)</th>
<th>Irms (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max</td>
<td>10% drop</td>
<td>20% drop</td>
<td>30% drop</td>
<td>20°C rise</td>
</tr>
<tr>
<td>XGL5030-181ME</td>
<td>0.18</td>
<td>1.3</td>
<td>1.6</td>
<td>160</td>
<td>13.6</td>
</tr>
<tr>
<td>XGL5030-351ME</td>
<td>0.35</td>
<td>1.8</td>
<td>2.2</td>
<td>100</td>
<td>11.0</td>
</tr>
<tr>
<td>XGL5030-401ME</td>
<td>0.40</td>
<td>2.2</td>
<td>2.7</td>
<td>88</td>
<td>10.0</td>
</tr>
<tr>
<td>XGL5030-521ME</td>
<td>0.52</td>
<td>2.5</td>
<td>3.0</td>
<td>80</td>
<td>8.9</td>
</tr>
<tr>
<td>XGL5030-601ME</td>
<td>0.60</td>
<td>2.6</td>
<td>3.2</td>
<td>75</td>
<td>8.4</td>
</tr>
<tr>
<td>XGL5030-651ME</td>
<td>0.65</td>
<td>3.3</td>
<td>4.0</td>
<td>68</td>
<td>8.1</td>
</tr>
<tr>
<td>XGL5030-821ME</td>
<td>0.82</td>
<td>3.8</td>
<td>4.6</td>
<td>56</td>
<td>7.3</td>
</tr>
<tr>
<td>XGL5030-901ME</td>
<td>0.90</td>
<td>4.3</td>
<td>5.2</td>
<td>54</td>
<td>6.5</td>
</tr>
<tr>
<td>XGL5030-102ME</td>
<td>1.00</td>
<td>4.8</td>
<td>5.8</td>
<td>52</td>
<td>5.9</td>
</tr>
<tr>
<td>XGL5030-122ME</td>
<td>1.2</td>
<td>5.0</td>
<td>6.0</td>
<td>47</td>
<td>5.9</td>
</tr>
<tr>
<td>XGL5030-152ME</td>
<td>1.5</td>
<td>6.8</td>
<td>7.9</td>
<td>43</td>
<td>5.3</td>
</tr>
<tr>
<td>XGL5030-182ME</td>
<td>1.8</td>
<td>7.5</td>
<td>8.7</td>
<td>37</td>
<td>4.8</td>
</tr>
<tr>
<td>XGL5030-222ME</td>
<td>2.2</td>
<td>9.2</td>
<td>10.6</td>
<td>34</td>
<td>4.2</td>
</tr>
<tr>
<td>XGL5030-332ME</td>
<td>3.3</td>
<td>13.3</td>
<td>14.9</td>
<td>28</td>
<td>3.6</td>
</tr>
<tr>
<td>XGL5030-472ME</td>
<td>4.7</td>
<td>21.9</td>
<td>24.5</td>
<td>23</td>
<td>3.1</td>
</tr>
<tr>
<td>XGL5030-562ME</td>
<td>5.6</td>
<td>24.1</td>
<td>27.0</td>
<td>21</td>
<td>2.8</td>
</tr>
<tr>
<td>XGL5030-682ME</td>
<td>6.8</td>
<td>28.6</td>
<td>32.1</td>
<td>18</td>
<td>2.5</td>
</tr>
<tr>
<td>XGL5030-822ME</td>
<td>8.2</td>
<td>36.5</td>
<td>41.0</td>
<td>17</td>
<td>2.3</td>
</tr>
<tr>
<td>XGL5030-103ME</td>
<td>10</td>
<td>43.0</td>
<td>48.4</td>
<td>15</td>
<td>2.1</td>
</tr>
<tr>
<td>XGL5030-123ME</td>
<td>12</td>
<td>50.0</td>
<td>56.5</td>
<td>14</td>
<td>1.9</td>
</tr>
<tr>
<td>XGL5030-153ME</td>
<td>15</td>
<td>68.8</td>
<td>77.1</td>
<td>12</td>
<td>1.7</td>
</tr>
<tr>
<td>XGL5030-183ME</td>
<td>18</td>
<td>87.2</td>
<td>97.7</td>
<td>11</td>
<td>1.6</td>
</tr>
<tr>
<td>XGL5030-223ME</td>
<td>22</td>
<td>106.0</td>
<td>118.8</td>
<td>10</td>
<td>1.4</td>
</tr>
</tbody>
</table>

1. When ordering, please specify termination and packaging codes:

Termination:
- E = RoHS compliant tin-silver over copper.
- Special order: T = RoHS tin-silver-copper (95.5/4/0.5) or S = non-RoHS tin-lead (63/37).

Packaging:
- C = 7” machine-ready reel. EIA-481 embossed plastic tape (400 per full reel).
- Quantities less than full reel available: in tape (not machine ready) or with leader and trailer ($25 charge).
- D = 13” machine-ready reel. EIA-481 embossed plastic tape (1500 per full reel).
- Factory order only, not stocked.

2. Inductance tested at 1 MHz, 0.1 Vrms, 0 Adc.
3. DCR measured on a micro-ohmmeter.
4. SRF measured using Agilent/HP 4395A or equivalent.
5. DC current at 25°C that causes the specified inductance drop from its value without current.
6. Current that causes the specified temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings.
7. Electrical specifications at 25°C.

Refer to Doc 362 “Soldering Surface Mount Components” before soldering.

Irms Testing

Irms testing was performed on 0.75 inch wide × 0.25 inch thick copper traces in still air.

Temperature rise is highly dependent on many factors including pcb land pattern, trace size, and proximity to other components. Therefore temperature rise should be verified in application conditions.

Click for temperature derating information.
Shielded Power Inductors – XGL5030

L vs Current

- Inductance vs Current graphs for different currents and inductance values.
- Each graph shows the relationship between current (A) and inductance (µH) for Snubber Inductors.
- The graphs indicate how inductance changes with varying current levels.

This product may not be used in medical or high risk applications without prior Coilcraft approval. Specification subject to change without notice. Please check web site for latest information.
Shielded Power Inductors – XGL5030

L vs Current

- **Inductance (µH)**
 - 1.5 µH
 - 1.8 µH
 - 2.2 µH
 - 3.3 µH
 - 4.7 µH
 - 5.6 µH
 - 6.8 µH
 - 8.2 µH
 - 10 µH

- **Current (A)**
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12

- **Inductance vs Current**
 - Graphs showing the relationship between inductance and current for different inductor values.
Shielded Power Inductors – XGL5030

L vs Current

![Graph 1](15 µH)

![Graph 2](18 µH)

![Graph 3](22 µH)