XEL/XAL/XGL

High current & high frequency power inductors

- Wide range of sizes and inductance values (up to size 1580 and 33 µH)
- Perfect for high temperature applications
- Find your required inductance in the far left column.
- Read up to see the Coilcraft product series and dimensions.
- High current handling (up to 111 A)
- Soft saturation characteristic to withstand high current spikes
- Very low DCR

Specifications

<table>
<thead>
<tr>
<th>Base Wire</th>
<th>XEL3515</th>
<th>XEL3530</th>
<th>XEL355X</th>
<th>XEL401x</th>
<th>XEL402x</th>
<th>XEL405x</th>
<th>XEL406x</th>
<th>XEL5020</th>
<th>XEL5050</th>
<th>XEL506x</th>
<th>XEL6020</th>
<th>XEL6050</th>
<th>XEL606x</th>
<th>XAL6020</th>
<th>XAL7020</th>
<th>XEL7030</th>
<th>XEL7080</th>
<th>XEL8050</th>
<th>XEL806x</th>
<th>XAL8080</th>
<th>XAL9080</th>
<th>XAL1010</th>
<th>XAL1515</th>
<th>XEL201x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>5.0</td>
<td>5.2</td>
<td>5.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Length</td>
<td>13.5</td>
</tr>
<tr>
<td>Inductance</td>
<td></td>
</tr>
<tr>
<td>0.10 µH</td>
<td>24.0</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>0.22 µH</td>
<td>8.2</td>
</tr>
<tr>
<td>0.35 µH</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>0.33 µH</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>0.30 µH</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>0.22 µH</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>0.10 µH</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>0.072 µH</td>
<td>0.072</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

- High voltage version available
- Specifications subject to change without notice. Document 3793X-1 Revised 09/27/19

For free evaluation samples or more information, visit www.coilcraft.com or call 800-322-2645.
XGL, XEL, XAL or XFL?

Making the Best Choice
Coilcraft offers four popular styles of high-performance molded power inductors, our XGL, XEL, XAL and XFL Families. They are mechanically rugged and magnetically shielded for use in high-density circuits. Each style offers unique performance benefits.

NEW! XGL
- Lowest DCR & widest inductance range
- Lowest DCR
- Widest inductance range
- Highest RMS current rating
- Lowest power losses over wide frequency range (up to 10 MHz)
- Soft saturation characteristics to withstand high current spikes
- No thermal-aging issue and perfect for high-temperature applications

XEL/XAL
- High current & high frequency
- Wide range of sizes and inductance values (up to size 1580 and 33 µH)
- Low inductance values for high-frequency applications (as low as 0.072 µH)
- Low AC losses at high-frequency range (2 to 10 MHz)
- Highest current handling
- Soft saturation characteristics to withstand high current spikes
- Very low DCR
- No thermal-aging issue and perfect for high-temperature applications

XFL
- Low DCR & lowest profile
- Low DCR
- Lowest profile
- Suitable for IoT / Wearables
- Offers low inductance values for high-frequency applications
- No thermal-aging issue

Inductance Inductance

<table>
<thead>
<tr>
<th>Part Number</th>
<th>L nom (µH)</th>
<th>DCR typ (mOhms)</th>
<th>Isat (A) 30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>XGL4020</td>
<td>2.2</td>
<td>19.5</td>
<td>6.2</td>
</tr>
<tr>
<td>XEL4020</td>
<td>2.2</td>
<td>35.2</td>
<td>5.9</td>
</tr>
<tr>
<td>XAL4020</td>
<td>2.2</td>
<td>35.2</td>
<td>5.6</td>
</tr>
<tr>
<td>XFL4020</td>
<td>2.2</td>
<td>21.4</td>
<td>3.7</td>
</tr>
</tbody>
</table>

For free evaluation samples or more information, visit www.coilcraft.com or call 800-322-2645.

Specifications

1. Find your required inductance in the far left column.
2. Scan the row until you find the desired current rating (bold number); parts from there to the right meet your requirement.
3. Read up to see the Coilcraft product series and dimensions.