Coupled Inductors MSD1514

- Excellent coupling coefficient (k ≥ 0.97)
- Ideal for use in a variety of circuits including flyback, multi-output buck, SEpic, Zeta, and Ćuk.
- High inductance, high efficiency and excellent current handling.
- In SEpic topologies, the required inductance for each winding is half the value needed for two separate inductors, allowing selection of a part with lower DCR and higher current handling.

![Typical Flyback Converter](image1)

Core material Ferrite
Core and winding loss Go to online calculator
Environmental RoHS compliant, halogen free
Terminations RoHS compliant matte tin over nickel over phos bronze. Other terminations available at additional cost.
Weight: 9.0 – 11.8 g
Ambient temperature –40°C to +85°C with (40°C rise) Irms current.
Maximum part temperature +125°C (ambient + temp rise).
Storage temperature Component: –40°C to +125°C.
Tape and reel packaging: –40°C to +80°C
Winding-to-winding isolation 500 Vrms, one minute
Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles
Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)
Packaging 175/13” reel; Plastic tape: 32 mm wide, 0.5 mm thick, 24 mm pocket spacing, 14.3 mm pocket depth
PCB washing Tested with pure water or alcohol only. For other solvents, see Doc787_PCB_Washing.pdf.
MSD1514 Coupled Inductors

<table>
<thead>
<tr>
<th>Part number</th>
<th>Inductance (µH)</th>
<th>DCR (Ohms)</th>
<th>SRF (MHz)</th>
<th>Coupling coefficient</th>
<th>Leakage inductance (µH)</th>
<th>Isat (A)</th>
<th>Irms (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSD1514-252ME</td>
<td>2.5 ±20%</td>
<td>0.010</td>
<td>0.012</td>
<td>34.0</td>
<td>0.97</td>
<td>0.20</td>
<td>25.0</td>
</tr>
<tr>
<td>MSD1514-472ME</td>
<td>4.7 ±20%</td>
<td>0.012</td>
<td>0.014</td>
<td>25.0</td>
<td>0.98</td>
<td>0.20</td>
<td>19.5</td>
</tr>
<tr>
<td>MSD1514-103ME</td>
<td>10 ±20%</td>
<td>0.015</td>
<td>0.018</td>
<td>16.5</td>
<td>0.99</td>
<td>0.40</td>
<td>13.4</td>
</tr>
<tr>
<td>MSD1514-123ME</td>
<td>12 ±20%</td>
<td>0.018</td>
<td>0.022</td>
<td>14.5</td>
<td>0.99</td>
<td>0.40</td>
<td>12.2</td>
</tr>
<tr>
<td>MSD1514-153ME</td>
<td>15 ±20%</td>
<td>0.024</td>
<td>0.028</td>
<td>11.0</td>
<td>>0.99</td>
<td>0.42</td>
<td>10.9</td>
</tr>
<tr>
<td>MSD1514-223ME</td>
<td>22 ±20%</td>
<td>0.031</td>
<td>0.036</td>
<td>10.0</td>
<td>>0.99</td>
<td>0.45</td>
<td>9.00</td>
</tr>
<tr>
<td>MSD1514-273ME</td>
<td>27 ±20%</td>
<td>0.034</td>
<td>0.039</td>
<td>8.50</td>
<td>>0.99</td>
<td>0.45</td>
<td>8.14</td>
</tr>
<tr>
<td>MSD1514-333ME</td>
<td>33 ±20%</td>
<td>0.045</td>
<td>0.052</td>
<td>7.20</td>
<td>>0.99</td>
<td>0.45</td>
<td>7.40</td>
</tr>
<tr>
<td>MSD1514-473ME</td>
<td>47 ±20%</td>
<td>0.065</td>
<td>0.075</td>
<td>5.60</td>
<td>>0.99</td>
<td>0.55</td>
<td>6.20</td>
</tr>
<tr>
<td>MSD1514-683ME</td>
<td>68 ±20%</td>
<td>0.078</td>
<td>0.090</td>
<td>5.20</td>
<td>>0.99</td>
<td>0.55</td>
<td>5.10</td>
</tr>
<tr>
<td>MSD1514-104KE</td>
<td>100 ±10%</td>
<td>0.115</td>
<td>0.126</td>
<td>3.80</td>
<td>>0.99</td>
<td>0.55</td>
<td>4.20</td>
</tr>
<tr>
<td>MSD1514-224KE</td>
<td>220 ±10%</td>
<td>0.261</td>
<td>0.287</td>
<td>2.30</td>
<td>>0.99</td>
<td>0.70</td>
<td>2.85</td>
</tr>
<tr>
<td>MSD1514-334KE</td>
<td>330 ±10%</td>
<td>0.334</td>
<td>0.367</td>
<td>2.10</td>
<td>>0.99</td>
<td>0.80</td>
<td>2.33</td>
</tr>
<tr>
<td>MSD1514-474KE</td>
<td>470 ±10%</td>
<td>0.500</td>
<td>0.550</td>
<td>1.65</td>
<td>>0.99</td>
<td>1.2</td>
<td>1.95</td>
</tr>
<tr>
<td>MSD1514-105KE</td>
<td>1000 ±10%</td>
<td>1.12</td>
<td>1.25</td>
<td>1.10</td>
<td>>0.99</td>
<td>2.0</td>
<td>1.34</td>
</tr>
</tbody>
</table>

1. When ordering, please specify termination and packaging codes:

 - **MSD1514-105KED**

 Termination: E = RoHS compliant matte tin over nickel over phos bronze. Special order: Q = RoHS tin-silver-copper (95.5/4/0.5) or P = non-RoHS tin-lead (63/37).

 Packaging: D = 13” machine-ready reel. EIA-481 embossed plastic tape (175 parts per full reel). Quantities less than full reel available: in tape (not machine ready) or with leader and trailer ($25 charge).

 B = Less than full reel. In an effort to simplify our part numbering system, Coilcraft is eliminating the need for multiple packaging codes. When ordering, simply change the last letter of your part number from B to D.

2. Inductance shown for each winding, measured at 100 kHz, 0.1 Vrms, 0 Adc on an Agilent/HP 4284A LCR meter or equivalent. When leads are connected in parallel, inductance is the same value. When leads are connected in series, inductance is four times the value.

3. DCR is for each winding. When leads are connected in parallel, DCR is half the value. When leads are connected in series, DCR is twice the value.

4. SRF measured using an Agilent/HP 4191A or equivalent. When leads are connected in parallel, SRF is the same value.

5. DC current at which the inductance drops the specified amount from its value without current. It is the sum of the current flowing in both windings.

6. Equal current when applied to each winding simultaneously that causes a 40°C temperature rise from 25°C ambient. Click for temperature derating information.

7. Maximum current when applied to one winding that causes a 40°C temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings. Click for temperature derating information.

Coupled Inductor Core and Winding Loss Calculator

This web-based utility allows you to enter frequency, peak-to-peak (ripple) current, and Irms current to predict temperature rise and overall losses, including core loss. [Go to online calculator](#).
MSD1514 Coupled Inductors

Typical L vs Current

Typical L vs Frequency

For optional tin-lead and tin-silver-copper terminations, dimensions are for the mounted part. Dimensions before mounting can be an additional 0.012 inch (0.3 mm).

Dimensions are in **inches** or **mm**.