Coupled Inductors – MSC1278 For SEPIC Applications

The MSC1278 coupled inductors are designed with high leakage inductance for use in SEPIC applications. The loosely coupled windings \((K \approx 0.8)\) improve SEPIC efficiency by reducing circulating current and provide twice the ripple current reduction of separate inductors.

These inductors offer high efficiency and excellent current handling in a rugged, low cost part. They are well suited for use as a VRM inductors in high-current DC-DC converters and VRM/VRD controllers.

They can also be used as two single inductors connected in series or parallel.

![MSC1278 Coupled Inductors](image)

Recommended Land Pattern

- **Core material**: Ferrite
- **Core and winding loss**: Go to online calculator
- **Terminations**: RoHS compliant matte tin over nickel over phosph bronze. Other terminations available at additional cost.
- **Ambient temperature**: \(-40^\circ C \text{ to } +85^\circ C\) with 1rms current, \(+85^\circ C \text{ to } +125^\circ C\) with derated current
- **Storage temperature**: Component: \(-40^\circ C \text{ to } +125^\circ C\). Tape and reel packaging: \(-40^\circ C \text{ to } +125^\circ C\).
- **Winding to winding isolation**: 500 Vrms
- **Resistance to soldering heat**: Max three 40 second reflows at \(+260^\circ C\), parts cooled to room temperature between cycles
- **Moisture Sensitivity Level (MSL)**: 1 (unlimited floor life at \(<30^\circ C / 85\%\) relative humidity)
- **Failures in Time (FIT) / Mean Time Between Failures (MTBF)**: 38 per billion hours / 26,315,789 hours, calculated per Telcordia SR-332
- **Packaging**: 500/13" reel; Plastic tape: 24 mm wide, 0.4 mm thick, 16 mm pocket spacing, 8.1 mm pocket depth
- **PCB washing**: Tested with pure water or alcohol only. For other solvents, see [Doc787_PCB_Washing.pdf](#).

Typical SEPIC schematic

Coupled Inductors for SEPIC – MSC1278 Series

<table>
<thead>
<tr>
<th>Part number</th>
<th>Inductance (µH)</th>
<th>DCR max (Ohms)</th>
<th>SRF typ (MHz)</th>
<th>Coupling coefficient typ</th>
<th>Leakage inductance (µH)</th>
<th>Isat (A)</th>
<th>Irms (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC1278-103ML</td>
<td>10 ±20%</td>
<td>0.058</td>
<td>20</td>
<td>0.80</td>
<td>2.75</td>
<td>8.80</td>
<td>10.0</td>
</tr>
<tr>
<td>MSC1278-223KL</td>
<td>22 ±10%</td>
<td>0.096</td>
<td>12</td>
<td>0.82</td>
<td>5.85</td>
<td>6.00</td>
<td>6.80</td>
</tr>
<tr>
<td>MSC1278-333KL</td>
<td>33 ±10%</td>
<td>0.15</td>
<td>9.5</td>
<td>0.85</td>
<td>10.1</td>
<td>5.50</td>
<td>6.10</td>
</tr>
<tr>
<td>MSC1278-473KL</td>
<td>47 ±10%</td>
<td>0.18</td>
<td>7.8</td>
<td>0.83</td>
<td>14.5</td>
<td>3.70</td>
<td>4.34</td>
</tr>
</tbody>
</table>

1. When ordering, please specify termination and packaging code.

Termination:

- **L** = RoHS compliant matte tin over nickel over phosphorus bronze
- **T** = RoHS tin-silver-copper (95.5/4/0.5) or equivalent
- **S** = non-RoHS tin-lead (63/37)

Packaging:

- **D** = 13” machine-ready reel. EIA-481 embossed plastic tape (500 parts per full reel). Quantities less than full reel available: in tape (not machine ready) or with leader and trailer ($25 charge).
- **B** = Less than full reel. In an effort to simplify our part numbering system, Coilcraft is eliminating the need for multiple packaging codes. When ordering, simply change the last letter of your part number from B to D.

2. Inductance shown for each winding, measured at 100 kHz, 0.1 Vrms, 0 Adc on an Agilent/HP 4284A LCR meter or equivalent. When leads are connected in parallel, inductance is the same value. When leads are connected in series, inductance is four times the value.

3. DCR is for each winding. When leads are connected in parallel, DCR is half the value. When leads are connected in series, DCR is twice the value.

4. SRF measured using an Agilent/HP 4191A or equivalent. When leads are connected in parallel, SRF is the same value.

5. Leakage inductance is for L1 and is measured with L2 shorted.

6. DC current, at which the inductance drops the specified amount from its value without current. It is the sum of the current flowing in both windings.

7. Equal current when applied to each winding simultaneously that causes a 40°C temperature rise from 25°C ambient. See temperature rise calculation.

8. Maximum current when applied to one winding that causes a 40°C temperature rise from 25°C ambient. See temperature rise calculation.

Coupled Inductor Core and Winding Loss Calculator

This web-based utility allows you to enter frequency, peak-to-peak (ripple) current, and Irms current to predict temperature rise and overall losses, including core loss. [Go to online calculator](#).

Current Derating

![Current Derating Graph](#)

L vs Current

![L vs Current Graph](#)

L vs Frequency

![L vs Frequency Graph](#)