Tight coupling \((k \geq 0.97) \) makes the LPD6235 series of coupled inductors ideal for use in a variety of circuits including flyback, multi-output buck, SEPIC and Zeta. These coupled miniature shielded inductors are 3.5 mm high and 6.0 mm square. They provide high inductance, high efficiency and excellent current handling in low cost part.

They can be used as two single inductors connected in series or parallel, as a common mode choke or as a 1:1 transformer.
Coupled Inductors – LPD6235 Series

1. Please specify termination and packaging codes:

LPD6235-205MRC

Termination: R = RoHS compliant matte tin over nickel over silver.
S = RoHS compliant matte tin over nickel over silver.
P = RoS tin-lead (63/37)
Q = RoHS tin-silver-copper (95.5/4.5/0.5)

Packaging:

C = 7" machine-ready reel. EIA-481 embossed plastic tape (350 parts per full reel). Quantities less than full reel available: in tape (not machine ready) or with leader and trailer ($25 charge).
B = Less than full reel. In an effort to simplify our part numbering system, Coilcraft is eliminating the need for multiple packaging codes. When ordering, simply change the last letter of your part number from B to C.
D = 13" machine-ready reel. EIA-481 embossed plastic tape. Factory order only, not stocked (1500 parts per full reel).

2. Inductance shown for each winding, measured at 100 kHz, 0.1 Vrms, 0 Adc on an Agilent/HP 4284A LCR meter or equivalent. When leads are connected in parallel, inductance is the same value. When leads are connected in series, inductance is four times the value.

3. DCR is for each winding. When leads are connected in parallel, DCR is half the value. When leads are connected in series, DCR is twice the value.

4. SRF measured using an Agilent/HP 4191A or equivalent. When leads are connected in parallel, SRF is the same value.

5. Leakage inductance is for L1 and is measured with L2 shorted.

6. DC current at 25°C that causes the specified inductance drop from its value without current. It is the sum of the current flowing in both windings.

7. Equal current when applied to each winding simultaneously that causes a 40°C temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings.

8. Maximum current when applied to one winding that causes a 40°C temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings.

9. Electrical specifications at 25°C.

Refer to Doc 639 “Selecting Coupled Inductors for SEPIC Applications.”

Refer to Doc 362 “Soldering Surface Mount Components” before soldering.

Coupled Inductor Core and Winding Loss Calculator

This web-based utility allows you to enter frequency, peak-to-peak (ripple) current, and I rms current to predict temperature rise and overall losses, including core loss. Visit www.coilcraft.com/coupledloss.

Core material: Ferrite
Weight: 420 – 480 mg
Environmental: RoHS compliant, halogen free

Terminations: RoHS compliant matte tin over nickel over silver.

Ambient temperature: –40°C to +125°C (ambient + temp rise)

Maximum part temperature: +260°C, parts cooled to room temperature between cycles

Storage temperature: Component: –40°C to +125°C.

Winding to winding isolation: 100 Vrms, one minute

Resistance to soldering heat: Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles

Moisture Sensitivity Level (MSL): 1 (unlimited floor life at ≤ 85°C / 85% relative humidity)

Failures in Time (FIT) / Mean Time Between Failures (MTBF):

- 350/7 failures in 350 billion hours/7 years
- 350/13 failures in 350 billion hours/13 years

Packaging:

- Plastic tape: 16 mm wide, 3.12 mm thick, 12 mm pocket spacing, 3.68 mm pocket depth
- EIA-481 embossed plastic tape

Recommended pick and place nozzle: OD: 6.2 mm; ID: ≤ 3.1 mm

PCB washing: Tested to MIL-STD-202 Method 215 plus an additional aqueous wash. See Doc787_PCB_Washing.pdf.
Coupled Inductors – LPD6235 Series

L vs Current

L vs Frequency