Shielded Coupled Inductors MSD1048H

- Tight coupling \(k \geq 0.97 \)
- 200 V isolation
- Ideal for use in a variety of circuits including flyback, multi-output buck, SEPIC, Ćuk and Zeta.
- High efficiency and excellent current handling
- Can also be used as two single inductors connected in series or parallel, as a common mode choke or as a 1:1 transformer.
- AEC-Q200 Grade 1 (−40°C to +125°C)

Typical Flyback Converter

Typical Buck Converter with auxiliary output

Typical SEPIC schematic

Typical Zeta schematic

For optional tin-lead and tin-silver-copper terminations, dimensions are for the mounted part. Dimensions before mounting can be an additional 0.012 inch (0.3 mm).
Shielded Coupled Inductors – MSD1048H Series

<table>
<thead>
<tr>
<th>Part number*</th>
<th>Inductance± (µH)</th>
<th>DCR max3 (Ohms)</th>
<th>SRF typ4 (MHz)</th>
<th>Coupling coefficient typ</th>
<th>Leakage Inductance± (µH)</th>
<th>Isat± (A)</th>
<th>both windings±</th>
<th>one winding±</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSD1048H-222NE_</td>
<td>2.2 ±30%</td>
<td>0.022</td>
<td>55</td>
<td>>0.95</td>
<td>0.30</td>
<td>9.1</td>
<td>3.20</td>
<td>4.60</td>
</tr>
<tr>
<td>MSD1048H-103ME_</td>
<td>10 ±20%</td>
<td>0.055</td>
<td>26</td>
<td>>0.97</td>
<td>0.40</td>
<td>4.3</td>
<td>1.30</td>
<td>2.90</td>
</tr>
<tr>
<td>MSD1048H-223ME_</td>
<td>22 ±20%</td>
<td>0.100</td>
<td>17</td>
<td>>0.97</td>
<td>0.45</td>
<td>2.9</td>
<td>1.05</td>
<td>2.10</td>
</tr>
<tr>
<td>MSD1048H-473ME_</td>
<td>47 ±20%</td>
<td>0.212</td>
<td>12</td>
<td>>0.98</td>
<td>0.50</td>
<td>2.0</td>
<td>0.95</td>
<td>1.45</td>
</tr>
<tr>
<td>MSD1048H-683ME_</td>
<td>68 ±20%</td>
<td>0.305</td>
<td>9.0</td>
<td>>0.98</td>
<td>0.60</td>
<td>1.7</td>
<td>0.71</td>
<td>1.15</td>
</tr>
<tr>
<td>MSD1048H-104ME_</td>
<td>100 ±20%</td>
<td>0.395</td>
<td>7.3</td>
<td>>0.98</td>
<td>1.0</td>
<td>1.3</td>
<td>0.68</td>
<td>1.05</td>
</tr>
<tr>
<td>MSD1048H-224KE_</td>
<td>220 ±10%</td>
<td>0.920</td>
<td>5.0</td>
<td>>0.99</td>
<td>1.2</td>
<td>0.90</td>
<td>0.45</td>
<td>0.70</td>
</tr>
</tbody>
</table>

1. When ordering, please specify termination code:
 MSD1048H-224KE
 Termination: E = RoHS compliant matte tin over nickel over phos bronze.
 Special order: Q = RoHS tin-silver-copper (95.5/4/0.5)
 or P = non-RoHS tin-lead (63/37).
 Packaging: D = 13” machine-ready reel. EIA-481 embossed plastic tape. (800 parts per full reel).

2. Inductance shown for each winding, measured at 100 kHz, 0.1 Vrms, 0 Adc on an Agilent/HP 4284A LCR meter or equivalent. When leads are connected in parallel, inductance is the same value. When leads are connected in series, inductance is four times the value.

3. DCR is for each winding. When leads are connected in parallel, DCR is half the value. When leads are connected in series, DCR is twice the value.

4. SRF measured using an Agilent/HP 4191A or equivalent. When leads are connected in parallel, SRF is the same value.

5. Leakage Inductance is for L1 and is measured with L2 shorted.

6. DC current at 25°C that causes a 30% (typ) inductance drop from its value without current. It is the sum of the current flowing in both windings.

7. Equal current when applied to each winding simultaneously that causes a 40°C temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings. To predict temperature rise go to online calculator.

8. Maximum current when applied to one winding that causes a 40°C temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings. To predict temperature rise go to online calculator.

Coupled Inductor Core and Winding Loss Calculator
This web-based utility allows you to enter frequency, peak-to-peak (ripple) current, and Irms current to predict temperature rise and overall losses, including core loss. Go to online calculator.

Core material Ferrite
Core and winding loss Go to online calculator
Terminations RoHS compliant matte tin over nickel over phos bronze. Other terminations available at additional cost.
Weight: 1.5–1.8 g
Ambient temperature −40°C to +125°C with Irms current.
Maximum part temperature +165°C (ambient + temp rise).
Storage temperature Component: −40°C to +165°C.
Tape and reel packaging: −40°C to +80°C
Winding-to-winding isolation 200 Vrms, one minute
Resistance to soldering heat Max three 40 second reflo ws at +260°C, parts cooled to room temperature between cycles
Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

Terminations RoHS compliant matte tin over nickel over phos bronze. Other terminations available at additional cost.

Weight: 1.5–1.8 g
Ambient temperature −40°C to +125°C with Irms current.
Maximum part temperature +165°C (ambient + temp rise).
Storage temperature Component: −40°C to +165°C.
Tape and reel packaging: −40°C to +80°C
Winding-to-winding isolation 200 Vrms, one minute
Resistance to soldering heat Max three 40 second reflo ws at +260°C, parts cooled to room temperature between cycles
Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

Packaging 800/13” reel. Plastic tape: 24 mm wide, 0.35 mm thick, 16 mm pocket spacing, 5.1 mm pocket depth.

PCB washing Tested to MIL-STD-202 Method 215 plus an additional aqueous wash. See Doc787_PCB_Washing.pdf.

L vs Current

L vs Frequency

Coupled Inductor Core and Winding Loss Calculator
This web-based utility allows you to enter frequency, peak-to-peak (ripple) current, and Irms current to predict temperature rise and overall losses, including core loss. Go to online calculator.