NEW! Shielded Power Inductors – XGL5050

- Industry’s lowest DCR and ultra low AC losses over a wide frequency range
- AEC-Q200 Grade 1 (–40°C to +125°C)
- Superior current handling with soft saturation characteristics
- Wide inductance range – 0.16 to 33 µH
- Designer’s Kit C500 contains 3 of each part

Core material: Composite
Core and winding loss: See www.coilcraft.com/coreloss
Environmental: RoHS compliant, halogen free
Terminations: RoHS compliant tin-silver (96.5/3.5) over copper. Other terminations available at additional cost.
Weight: 0.77 – 0.87 g
Operating voltage: 0 – 80 V
Ambient temperature: –40°C to +125°C with (40°C rise) Irms current.
Maximum part temperature: +165°C (ambient + temp rise). Derating.
Storage temperature: Component: –55°C to +165°C.
Tape and reel packaging: –55°C to +80°C
Resistance to soldering heat: Max three 40 second refows at +260°C, parts cooled to room temperature between cycles.
Moisture Sensitivity Level (MSL): 1 (unlimited floor life at <30°C / 85% relative humidity)
Failures in Time (FIT) / Mean Time Between Failures (MTBF): 0.48 per billion hours / 2.08E+09 hours, calculated per Telcordia SR-332

Typical L vs Frequency

Packaging: 250/7” reel; 750/13” reel
Plastic tape: 16 mm wide, 0.30 mm thick, 12 mm pocket spacing, 5.21 mm pocket depth
Shielded Power Inductors – XGL5050

<table>
<thead>
<tr>
<th>Part number1</th>
<th>Inductance2 ±20% (µH)</th>
<th>DCR (mOhms)3 typ</th>
<th>max</th>
<th>SRF typ4 (MHz)</th>
<th>10% drop</th>
<th>20% drop</th>
<th>30% drop</th>
<th>20°C rise</th>
<th>40°C rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>XGL5050-161ME_</td>
<td>0.16</td>
<td>1.2</td>
<td>1.5</td>
<td>155</td>
<td>14.9</td>
<td>23.5</td>
<td>32.0</td>
<td>20.5</td>
<td>26.0</td>
</tr>
<tr>
<td>XGL5050-331ME_</td>
<td>0.33</td>
<td>1.6</td>
<td>2.0</td>
<td>100</td>
<td>10.7</td>
<td>16.9</td>
<td>23.5</td>
<td>19.0</td>
<td>24.6</td>
</tr>
<tr>
<td>XGL5050-501ME_</td>
<td>0.50</td>
<td>2.2</td>
<td>2.7</td>
<td>90</td>
<td>9.2</td>
<td>14.1</td>
<td>19.0</td>
<td>17.8</td>
<td>24.2</td>
</tr>
<tr>
<td>XGL5050-561ME_</td>
<td>0.56</td>
<td>2.5</td>
<td>3.0</td>
<td>88</td>
<td>8.5</td>
<td>13.2</td>
<td>18.0</td>
<td>17.6</td>
<td>24.0</td>
</tr>
<tr>
<td>XGL5050-721ME_</td>
<td>0.72</td>
<td>2.7</td>
<td>3.3</td>
<td>70</td>
<td>8.2</td>
<td>12.5</td>
<td>16.8</td>
<td>17.2</td>
<td>23.5</td>
</tr>
<tr>
<td>XGL5050-821ME_</td>
<td>0.82</td>
<td>2.9</td>
<td>3.5</td>
<td>70</td>
<td>7.6</td>
<td>11.6</td>
<td>15.5</td>
<td>16.6</td>
<td>22.9</td>
</tr>
<tr>
<td>XGL5050-102ME_</td>
<td>1.0</td>
<td>3.2</td>
<td>3.9</td>
<td>60</td>
<td>7.5</td>
<td>11.5</td>
<td>15.4</td>
<td>15.7</td>
<td>21.0</td>
</tr>
<tr>
<td>XGL5050-122ME_</td>
<td>1.2</td>
<td>3.8</td>
<td>4.6</td>
<td>50</td>
<td>7.4</td>
<td>11.2</td>
<td>15.1</td>
<td>14.8</td>
<td>20.1</td>
</tr>
<tr>
<td>XGL5050-152ME_</td>
<td>1.5</td>
<td>4.7</td>
<td>5.7</td>
<td>45</td>
<td>6.5</td>
<td>9.8</td>
<td>13.1</td>
<td>12.8</td>
<td>17.1</td>
</tr>
<tr>
<td>XGL5050-182ME_</td>
<td>1.8</td>
<td>6.5</td>
<td>7.8</td>
<td>40</td>
<td>5.5</td>
<td>8.3</td>
<td>11.1</td>
<td>11.1</td>
<td>15.3</td>
</tr>
<tr>
<td>XGL5050-222ME_</td>
<td>2.2</td>
<td>6.8</td>
<td>8.2</td>
<td>37</td>
<td>5.3</td>
<td>8.0</td>
<td>10.7</td>
<td>10.2</td>
<td>13.8</td>
</tr>
<tr>
<td>XGL5050-282ME_</td>
<td>2.8</td>
<td>8.5</td>
<td>9.8</td>
<td>33</td>
<td>4.8</td>
<td>7.3</td>
<td>9.8</td>
<td>9.1</td>
<td>12.4</td>
</tr>
<tr>
<td>XGL5050-332ME_</td>
<td>3.3</td>
<td>10.0</td>
<td>11.5</td>
<td>30</td>
<td>4.3</td>
<td>6.4</td>
<td>8.6</td>
<td>8.1</td>
<td>11.3</td>
</tr>
<tr>
<td>XGL5050-472ME_</td>
<td>4.7</td>
<td>13.9</td>
<td>16.0</td>
<td>25</td>
<td>3.5</td>
<td>5.3</td>
<td>7.0</td>
<td>7.1</td>
<td>9.7</td>
</tr>
<tr>
<td>XGL5050-562ME_</td>
<td>5.6</td>
<td>17.9</td>
<td>19.7</td>
<td>22</td>
<td>3.2</td>
<td>4.8</td>
<td>6.4</td>
<td>5.8</td>
<td>8.0</td>
</tr>
<tr>
<td>XGL5050-682ME_</td>
<td>6.8</td>
<td>21.0</td>
<td>23.1</td>
<td>21</td>
<td>3.0</td>
<td>4.6</td>
<td>6.2</td>
<td>5.5</td>
<td>7.5</td>
</tr>
<tr>
<td>XGL5050-822ME_</td>
<td>8.2</td>
<td>24.9</td>
<td>27.5</td>
<td>18</td>
<td>2.7</td>
<td>4.1</td>
<td>5.5</td>
<td>5.2</td>
<td>7.0</td>
</tr>
<tr>
<td>XGL5050-103ME_</td>
<td>10.0</td>
<td>30.5</td>
<td>33.6</td>
<td>17</td>
<td>2.5</td>
<td>3.7</td>
<td>4.9</td>
<td>4.6</td>
<td>6.2</td>
</tr>
<tr>
<td>XGL5050-123ME_</td>
<td>12.0</td>
<td>39.1</td>
<td>43.0</td>
<td>15</td>
<td>2.2</td>
<td>3.3</td>
<td>4.3</td>
<td>3.8</td>
<td>5.1</td>
</tr>
<tr>
<td>XGL5050-153ME_</td>
<td>15.0</td>
<td>49.8</td>
<td>54.9</td>
<td>13</td>
<td>2.0</td>
<td>2.9</td>
<td>3.9</td>
<td>3.4</td>
<td>4.6</td>
</tr>
<tr>
<td>XGL5050-183ME_</td>
<td>18.0</td>
<td>56.5</td>
<td>62.5</td>
<td>12</td>
<td>1.8</td>
<td>2.8</td>
<td>3.7</td>
<td>3.3</td>
<td>4.5</td>
</tr>
<tr>
<td>XGL5050-223ME_</td>
<td>22.0</td>
<td>72.1</td>
<td>79.5</td>
<td>11</td>
<td>1.6</td>
<td>2.5</td>
<td>3.3</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>XGL5050-333ME_</td>
<td>33.0</td>
<td>107.0</td>
<td>118.0</td>
<td>8</td>
<td>1.3</td>
<td>1.9</td>
<td>2.5</td>
<td>2.4</td>
<td>3.2</td>
</tr>
</tbody>
</table>

1. When ordering, please specify termination and packaging codes:

 - **XGL5050-333MEC**

 - **Termination:** E = RoHS compliant tin-silver over copper.
 - **Special order:** T = RoHS tin-silver-copper (95.5/4/0.5) or S = non-RoHS tin-lead (63/37).
 - **Packaging:** C = 7” machine-ready reel. EIA-481 embossed plastic tape (250 per full reel).
 - **Special order:** D = 13” machine-ready reel. EIA-481 embossed plastic tape (750 per full reel).
 - **Quantities less than full reel available:** in tape (not machine ready) or with leader and trailer ($25 charge).

2. Inductance tested at 1 MHz, 0.1 Vrms, 0.1 Adc.
3. DCR measured on a micro-ohmmeter.
4. SRF measured using Agilent/HP 4395A or equivalent.
5. DC current at 25°C that causes the specified inductance drop from its value without current.
 - **Click for temperature derating information.**
6. Current that causes the specified temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings.
 - **Click for temperature derating information.**
7. Electrical specifications at 25°C.
 - **Refer to Doc 362 “Soldering Surface Mount Components” before soldering.**

Irms Testing

Irms testing was performed on 0.75 inch wide × 0.25 inch thick copper traces in still air.

Temperature rise is highly dependent on many factors including pcb land pattern, trace size, and proximity to other components. Therefore temperature rise should be verified in application conditions.
Shielded Power Inductors – XGL5050

L vs Current

- L vs Current Graphs for XGL5050 Inductors
- Inductance (µH) vs Current (A) for different values of inductance at various currents.
Shielded Power Inductors – XGL5050

L vs Current

Current (A) vs **Inductance (µH)**

Current (A) vs **Inductance (µH)**
Shielded Power Inductors – XGL5050

L vs Current

![Graph 1: Current vs Inductance](image1)

![Graph 2: Current vs Inductance](image2)

![Graph 3: Current vs Inductance](image3)

![Graph 4: Current vs Inductance](image4)