

SMT Common Mode Chokes for power line applications

- · Solutions for use in a wide array of power line circuits
- Ideal for use in consumer electronics and industrial applications
- Suppression of high frequency common mode noise up to 100 MHz
- Excellent current ratings up to 10 A
- Isolation (hipot) up to 1500 Vrms
- · Surface mount toroids
- Upon request, additional values may be available for particular applications

Part	Common mode peak impedance	Inducta	nce (mH)	Irms	DCR max	Isolation	Length max	Width max	Height max	
number	(kOhms)	nom	min	(A)	(mOhms)	(Vrms)	(mm)	(mm)	(mm)	Page
CE1755-AL	3.32 @ 5.1 MHz	0.88	0.57	1.2	130	1000	13.00	13.00	5.46	2
CR7915-AL	3.10 @ 4.9 MHz	1.12	0.73	2.6	49.5	1500	13.00	13.00	5.60	3
CF3094-AL	7.93 @ 2.5 MHz	1.17	0.76	1.1	200	1000	13.00	13.00	5.46	4
CM6518-AL	4.17 @ 1.9 MHz	1.40	0.91	2.5	60.0	1500	16.38	14.22	8.90	5
CJ5094-CL	28.28 @ 0.26 MHz	10.0	6.5	1.2	180	1000	16.38	14.22	8.90	6
CV9172-AL	70.01 @ 0.21 MHz	22.0	14.3	0.57	850	1000	16.38	14.22	8.90	7
CF2638L	2.59 @ 4.3 MHz	0.22	0.14	2.9	60.0	1000	19.56	17.02	9.91	8
CD1479-AL	4.19 @ 3.0 MHz	0.59	0.38	4.2	20.0	1000	19.56	17.02	9.91	9
CH4659-AL	4.56 @ 2.5 MHz	0.77	0.50	4.7	40.0	1000	19.56	17.02	9.91	10
CD1480-BL	4.53 @ 2.2 MHz	1.32	0.85	3.5	60.0	1000	19.56	17.02	9.91	11
CE2439L	9.42 @ 1.1 MHz	1.47	0.96	2.5	80.0	1000	19.56	17.02	9.91	12
CG3333-AL	2.27 @ 2.9 MHz	0.90	0.59	3.7	50.0	1000	19.56	17.02	9.90	13
CG3528-AL	6.23 @ 0.72 MHz	3.00	1.95	3.1	42.0	1000	19.56	17.02	9.91	14
CE1759-AL	4.82 @ 0.99 MHz	0.81	0.52	6.0	14.0	1000	31.0	26.0	13.0	15
CG3885-AL	3.11 @ 1.8 MHz	0.47	0.30	10.0	8.0	1000	31.0	26.0	12.7	16
CF2805-AL	3.64 @ 1.9 MHz	0.63	0.40	6.8	14.0	1000	31.0	26.0	12.7	17

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg Document 1194P-1 Revised 09/09/21

Common Mode Choke – CE1755-AL

Part number ¹	Common mode impedance max (kOhms)	Inductanc	e (mH) ² min	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CE1755-AL_	3.32 @ 5.1 MHz	0.88	0.57	1.2	130	1000
	se specify packaging code:		Tunic	al Attenuatio	0n	
	CE1755-ALD		турис		UII	
ta re le: B = Le	"machine-ready reel. EIA-481 empe (600 parts per full reel). Quantile available: in tape (not machine rader and trailer (\$25 charge).	ties less than full ready) or with blify our part	5	Differential	mode	
fo	Imbering system, Coilcraft is elimin r multiple packaging codes. When c ange the last letter of your part nur	ordering, simply	(Bp) 15			
	r each winding, measured at 100 k HP 4263B LCR meter or equivaler		20 atio			
	hat causes a 40°C rise from 25°C rence only and does not represen		Attenuation (dB)			
 DCR is specified per Isolation (hipot) meas 	Ũ		30			
 Electrical specification 			35 —		Common mode	
lefer to Doc 362 "Solder	ing Surface Mount Components" bef	ore soldering.	40			
			0.1	1	10	1
512 3,0 max	Y Internal code				e versus Frequency (MHz)	iency
$\begin{array}{c} 0.512\\ \hline 13,0 \end{array}$			Impedance (kOhm)			
→ 1 0.410 Recomm 10,41 L and Pa			0.1			
10,41 Land Pa			0.1	1 F	¹⁰ Frequency (MHz)	10
	$2 \rightarrow 0.060$ Dimens	sions are in <u>inches</u> mm	Terminati Weight 0 Ambient Maximum Storage to Tape and	.92 g temperature -40°C part temperature emperature Comp reel packaging: -40		urrent mp rise) C.
	10-02 30-000-04		+260°C, p Moisture	arts cooled to room	t Max three 40 secon temperature between MSL) 1 (unlimited floo	cycles

85% relative humidity) **Packaging** 600/13" reel Plastic tape: 24 mm wide, 0.4 mm thick, 16 mm pocket spacing, 5.5 mm pocket depth

PCB washing Tested to MIL-STD-202 Method 215 plus an additional aqueous wash. See Doc787_PCB_Washing.pdf.

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-2 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CR7915-AL

Dort number	Common mode impedance	Inductanc			DCR max ⁴	Isolation ⁵
Part number ¹	max (kOhms)	nom	min	(A)	(mOhms)	(Vrms)
CR7915-AL_	3.10 @ 4.9 MHz	1.12	0.73	2.6	49.5	1500
1. When ordering, please	specify packaging code:		Typic	al Attenuatio	n	
	CR7915-ALD					
tape reel lead B = Less num for m char	machine-ready reel. EIA-481 er (600 parts per full reel). Quanti available: in tape (not machine ler and trailer (\$25 charge). s than full reel. In an effort to sim ibering system, Coilcraft is elimir nultiple packaging codes. When nge the last letter of your part nu	ities less than full ready) or with plify our part nating the need ordering, simply mber from B to D.	5 10 15 20 25 25			
0 Adc on an Agilent/HP	each winding, measured at 10 k 2 4263B LCR meter or equivale at causes a 40°C rise from 25°C	nt.	20 D			
information is for refere	nce only and does not represer		i 25			
mum ratings. . DCR is specified per wi	inding					
5. Isolation (hipot) measured	0		30			
 Electrical specifications 			35		Common mode	
•	g Surface Mount Components" be	fore soldering.	00			
-		-	40			
	$\nabla -$		0.1	1	10	
1	3			F	requency (MHz)	
512 max CR7915-A 3.0 max XXXX Y	_		Typic	al Impedance	e versus Frequ	ienev
3,0 max XXXXY	Internal code		I y pic	ai impedance	versus rrequ	icite y
2			10			
			_			
<	× -					
13,0	×					
L			Ĩ.			\checkmark \mid \mid \mid
			Impedance (kOhm)			
220 5,6 max	\square		e (
			anc			
Ť	0.005/0,13		edi			
			du 🗆			
→ ⁽	0.175					_
	4,40					
1	3					
0.410 Recommen	nded		0.1			
^{10,41} Land Patte	ern		0.1	1	10	
2	4			F	requency (MHz)	
	→ 0.060 1,52 Dimen:	sions are in <mark>inches</mark> mm	Terminati Weight	.53 g temperature -40°C	t tin-silver-copper ov to +85°C with Irms c +125°C (ambient + te	urrent
1 3			Storage t Tape and Resistand +260°C, p Moisture 85% relati Packagin 16 mm po PCB wasl	emperature Compo reel packaging: –40° ce to soldering heat arts cooled to room to Sensitivity Level (N ve humidity) g 600/13″ reel Pla: cket spacing, 5.5 mm	nent: -40°C to +125° C to +80°C : Max three 40 secor :emperature between ISL) 1 (unlimited floc stic tape: 24 mm wide n pocket depth TD-202 Method 215 pl	C. Ind reflows at cycles or life at <30°C / e, 0.4 mm thick
Coilcra	UK +44- ⁻ Taiwan +	47-639-6400 salı 1236-730595 sa -886-2-2264 3646 36-21-6218 8074	es@coilcraft-e sales@coilc	urope.com raft.com.tw	Document 1194P-3 This product may not be risk applications withou Specification subject 1	© Coilcraft Inc. used in medical or t prior Coilcraft app

www.coilcraft.com

Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Common Mode Chokes – CF3094-AL

Part number ¹	Common mode impedance	Inductanc	e (mH) ² min	Irms ³	DCR max ⁴ (mOhms)	Isolation ⁵
CF3094-AL	max (kOhms) 7.93 @ 2.5 MHz	nom 1.17	0.76	(A) 1.1	200	(Vrms) 1000
—	specify packaging code:	1.17				1000
the forein of a children in g, ploaded	CF3094-ALD		Typica	al Attenuation)n	
Packaging: D = 13"	machine-ready reel. EIA-481 e	mbossed plastic	0	Differential ma		
tape reel leac	e (600 parts per full reel). Quant available: in tape (not machine ler and trailer (\$25 charge).	tities less than full ready) or with	5	Differential mo		
num for r	s than full reel. In an effort to sim bering system, Coilcraft is elimi nultiple packaging codes. When nge the last letter of your part nu	nating the need ordering, simply	(ap) 15			
	each winding, measured at 10 k 9 4263B LCR meter or equivale		25 atio			
Current per winding the	at causes a 40°C rise from 25°C ence only and does not represe	C ambient. This	Attenuation (dB)			
DCR is specified per w	rinding.		◄ 35			
Isolation (hipot) measu			40		Common mode	
Electrical specifications	s at 25°C. g Surface Mount Components" be	afora soldaring	45			
	g ounace mount components be	elore soldening.	50			
	3		0.1	1 F	¹⁰ requency (MHz)	
512 3,0 max CF3094-/ XXXX Y			Typica	l Impedanc	e versus Frequ	uency
2	4		10			
< <u>−_</u> 0.512 ma	x→					
13,0			Ê			
↓			- Pi			
215 ,46 max			e (k			
,46 max						
1	□0.005/0,13		eqs			
			Impedance (kOhm)			
->	0.175					
	4,45					
1	3					
0.410 Recommendation			0.1	1	10	
^{10,41} Land Patt				F	requency (MHz)	
	→ 0.060 Dimor	nsions are in <u>inches</u>	Terminatio		nt tin-silver-copper ov	er copper
0,50	1,52	mm		emperature -40°C	to +85°C with Irms of	
			Maximum	part temperature	+125°C (ambient + te	emp rise)
				emperature Compo eel packaging: –40°	onent: –40°C to +125° °C to +80°C	<i>.</i>
			Resistanc	e to soldering hea	t Max three 40 secor	
1	○ ●()() <i></i> ○ 2				temperature between ISL) 1 (unlimited floo	
c			85% relativ	/e humidity)	, ,	
				g 600/13″ reel Pla cket spacing, 5.5 mi	stic tape: 24 mm wid n pocket depth	e, U.4 mm thick
			PCB wash	ing Tested to MIL-S	TD-202 Method 215 p	lus an additiona
				ash. See Doc787_P	CD Mochine If	

Coilcraft www.coilcraft.com US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

ocument 1194P-4 Revised 09/09/21 © Coilcraft Inc. 2021

Common Mode Choke – CM6518-AL

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH)² min	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CM6518-AL_	4.17 @ 1.9 MHz	1.40	0.91	2.5	60.0	1500
When ordering, plea	se specify packaging code:		Typic	al Attenuatio	n	
	CM6518-ALD		I ypic		/11	
ta re le B = Lc B = Lc M fo C Hunductance shown fo O Adc on an Agilent/ Current per winding information is for refer mum ratings. DCR is specified per Isolation (hipot) mea Electrical specification	sured for two seconds.	ties less than full ready) or with plify our part lating the need ordering, simply mber from B to D. Hz, 0.1 Vrms, nt. ambient. This t absolute maxi-	0 5 10 15 20 25 30 35 40 40		Common mode	
			0.1		10 Trequency (MHz)	
645 5,38 max			Typic	al Impedanc	e versus Frequ	iency
→ 3 → 0.560 14,22	4 max —>		(kOhm)			
350 900 max → 0.175 4,45	1	- <u>0.520</u>	1 Impedance (kOhm)		10	
0.530 Recomm	ended				requency (MHz)	
13,46 Land Pa		sions are in <u>inches</u> mm	Terminat Weight 2 Ambient Maximum Storage 1 Tape and Resistan +260°C, p Moisture 85% relat Packagin 20 mm po	2.48 g temperature -40°C n part temperature cemperature Compored packaging: -40° ce to soldering hea barts cooled to room Sensitivity Level (N ive humidity) g 350/13" reel Pla ocket spacing, 9.1 mi	t Max three 40 secon temperature between ISL) 1 (unlimited floc stic tape: 24 mm wide	urrent emp rise) C. d reflows at cycles ir life at <30°C / e, 0.4 mm thick

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-5 Revised 09/09/21

© Coilcraft Inc. 2021

Colcra

www.coilcraft.com

Common Mode Choke – CJ5094-CL

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH)² min	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CJ5094-CL_	28.28 @ 0.26 MHz	10.0	6.5	1.2	180	1000
When ordering, pleas	se specify packaging code:		Typic	al Attenuati	011	
	CJ5094-CLD		I ypice		011	
ta, re le: B = Le nu foi O Adc on an Agilent/I Current per winding t information is for refe mum ratings. DCR is specified per	sured for two seconds.	tities less than full ready) or with nating the need ordering, simply umber from B to D. kHz, 0.1 Vrms, ent. C ambient. This	Atternation (dB)		Differential mode	
1	ing Surface Mount Components" be	efore soldering	55	_ ∖_ /++++		
		siele celaening.	60			
			o.1 Typica		Frequency (MHz)	uencv
.645 6,38 max CJ5094 XXXX	-		100	- r	__	, ====++++
	Internal code		10	\frown		
< 0.560 14.22 r	max —		nd 📃			
350 90 max][]	Impedance (kOhm)			
→ 0.175 ←			0.1			
			0.01		10	
, , , , , , , , , , , , , , , , , , , ,			0.1		Frequency (MHz)	
0.530 Recomme 13,46 Land Pa		nsions are in <u>inches</u> mm	Terminati Weight 2. Ambient t Maximum Storage ta Tape and n Resistanc +260°C, p Moisture 8 85% relati Packaging 24 mm po PCB wash	erial Ferrite ons RoHS complia 9 g temperature -40°C a part temperature emperature Comp reel packaging: -40 ce to soldering hea arts cooled to room Sensitivity Level (ve humidity) g 350/13" reel Pla cket spacing, 8.6 m	ant tin-silver-copper ov C to +85°C with Irms of +125°C (ambient + te onent: -40°C to +125° °C to +80°C at Max three 40 secord temperature between MSL) 1 (unlimited floc astic tape: 24 mm widd im pocket depth STD-202 Method 215 p	eurrent emp rise) C. d reflows at cycles or life at <30°C , e, 0.4 mm thick

Taiwan +886-2-2264 3646 sales@coilcraft.com.tw **China** +86-21-6218 8074 sales@coilcraft.com.cn

Singapore + 65-6484 8412 sales@coilcraft.com.sg

Common Mode Choke – CV9172-AL

Part number ¹	impedance max (kOhms)	Inductanc nom	e (mH) ² min	Irms ³ (A)	DCR max ⁴ (mOhms)	Isolation [®] (Vrms)
CV9172-AL	70.01 @ 0.21 MHz	22.0	14.3	0.57	850	1000
—	se specify packaging code:					
0.1	CV9172-ALD		1 ypical	Attenuati	011	
tap red lea B = Le nu for 0 Adc on an Agilent/H Current per winding t information is for refe mum ratings.	" machine-ready reel. EIA-481 er be (350 parts per full reel). Quant el available: in tape (not machine ader and trailer (\$25 charge). ss than full reel. In an effort to sim mbering system, Coilcraft is elimir multiple packaging codes. When ange the last letter of your part nu e each winding, measured at 10 k IP 4263B LCR meter or equivale hat causes a 40°C rise from 25°C rence only and does not represen	ities less than full ready) or with plify our part ating the need ordering, simply mber from B to D. Hz, 1.0 Vrms, nt. C ambient. This	V 5 10 15 20 25 30 35 40 45 50 40 45 50 50 40 45 50 40 40 45 50 40 40 45 50 40 40 45 50 40 40 45 50 40 40 45 50 40 40 45 50 40 40 45 50 40 40 40 45 50 40 40 45 50 40 40 40 40 45 50 40 40 40 40 45 50 40 40 40 40 40 40 40 40 40 40 40 40 40		Differential mode	
DCR is specified per	winding. sured for two seconds.		55			
Electrical specificatio			60			
	ng Surface Mount Components" be	fore soldering.	65			
			70		10	
2	1		0.1		Frequency (MHz)	
645 388 max					e versus Frequ	
			e ¹⁰			
< ^{0.560} / _{14,22} n	nax —		- Pr			
350 90 max		m	eda			
			Impedance (KOhm)			
	0.005/0,13	0.520	– 0.1			
0 175		13,21				
	1					
			0.01			
I			0.1	1	¹⁰ Frequency (MHz)	
0.530 13,46 Land Pat		sions are in <u>inches</u> mm	Weight 2.4 g Ambient ten Maximum pr Storage tem Tape and ree Resistance t +260°C, part Moisture Se 85% relative Packaging 3 20 mm pocke PCB washiny	s RoHS complia perature -40°C art temperature perature Compel packaging: -40 to soldering hea s cooled to room nsitivity Level (humidity) 350/13" reel Pla at spacing, 9.1 m g Tested to MIL-5	at Max three 40 secon temperature between MSL) 1 (unlimited floo astic tape: 24 mm wide	urrent mp rise) C. d reflows at cycles r life at <30°C a, 0.4 mm thick

Coilcraft www.coilcraft.com US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-7 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CF2638L

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH)² min		Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CF2638LD	2.59 @ 4.3 MHz	0.22	0.14		2.9	60.0	1000
When ordering, pleas	se specify packaging code:		Tvn	ical	Attenuatio	n	
	CF2638LD		- / F	,	Differential mo		
taj re- lea B = Le nu	"machine-ready reel. EIA-481 en be (250 parts per full reel). Quanti el available: in tape (not machine i ader and trailer (\$25 charge). ess than full reel. In an effort to simi, imbering system, Coilcraft is elimin r multiple packaging codes. When of	ties less than full ready) or with plify our part lating the need	5 10 (8p) 15				
ch Inductance shown for	ange the last letter of your part nur r each winding, measured at 10 kl	mber from B to D. Hz, 1.0 Vrms,	ution (20				
Current per winding t	HP 4263B LCR meter or equivaler hat causes a 40°C rise from 25°C rence only and does not represen	ambient. This	Attenuation (dB)	;			
DCR is specified per	winding.		30			Common mode	
Isolation (hipot) meas Electrical specificatio	sured for two seconds.		35				
	ng Surface Mount Components" bet	fore soldering.	40				
				0.1	1 Fr	10 equency (MHz)	
770 7,56 max 2 4 0.670 17,02 390 91 max 1 1 1	Y ← Internal code		In the second se	0.1	- - - - - - - - - - - - - - - - - - -	versus Frequency (MHz)	
0.660 16,76 Land Pa	0.060 1,52	sions are in <u>inches</u> mm	Termin Weigh Ambie Maxim Storag Tape a Resist +260°0 Moiste 85% re Packa 24 mm PCB w	nations at 3.2 g ent tem hum pa ge tem and ree tance t C, parts ure Ser elative I ging 2 n pocke vashing	perature -40°C f int temperature - perature Compor packaging: -40°C o soldering heat s cooled to room to asitivity Level (Main asitivity) 50/13" reel Plas t spacing, 10.1 mi	Max three 40 secon emperature between SL) 1 (unlimited floot tic tape: 32 mm wid n pocket depth D-202 Method 215 p	eurrent emp rise) C. d reflows at cycles or life at <30°C / e, 0.5 mm thick,

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-8 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CD1479-AL

Part number ¹	impedance max (kOhms)	Inductand nom	ce (mH) ² min	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CD1479-AL_	4.19 @ 3.0 MHz	0.59	0.38	4.2	20.0	1000
. When ordering, pleas	e specify packaging code:		Typic	al Attenuati	011	
	CD1479-ALD					
tap red lea B = Le nu for ch 2. Inductance shown for 0 Adc on an Agilent/F 3. Current per winding t	0	ities less than full ready) or with plify our part nating the need ordering, simply mber from B to D. Hz, 0.1 Vrms, nt.	5 10 15 20 25 30	Differential		
 Electrical specification 			35 —		Common mode	
	ng Surface Mount Components" be	fore soldering.	40			
			0.1	I	10 Frequency (MHz)	1
0.770 19,56 max XXXX	aftInternal code				e versus Frequ	iency
0.390 9,91 max		0.660 16,76	Impedance (kOhm)			
	4,45		0.1		10	10
0.660 16,76 Land Pa	0.060 1,52	sions are in <u>inches</u> mm	Terminat Weight 4 Ambient Maximun Storage t Tape and Resistan +260°C, p Moisture 85% relat Packagin 24 mm pc PCB was	terial Ferrite ions RoHS complia .9 g temperature -40°C n part temperature temperature Comp reel packaging: -40 ce to soldering her parts cooled to room Sensitivity Level (ive humidity) g 250/13" reel Pli ocket spacing, 10.1 m	at Max three 40 secor temperature between MSL) 1 (unlimited floc astic tape: 32 mm wid mm pocket depth STD-202 Method 215 p	eurrent emp rise) C. d reflows at cycles or life at <30°C / e, 0.5 mm thick,

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-9 Revised 09/09/21

© Coilcraft Inc. 2021

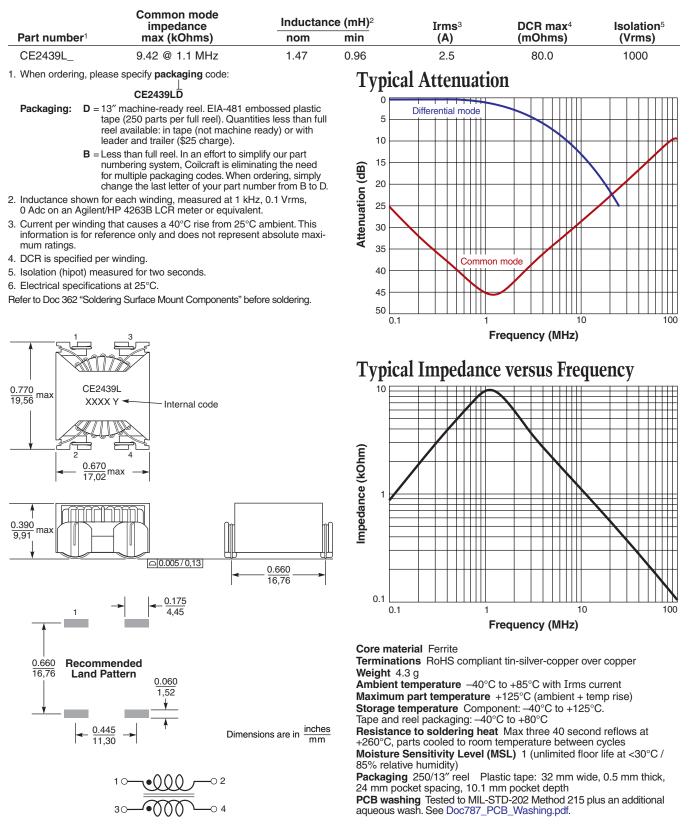
Common Mode Choke – CH4659-AL

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH) ² min	Irms ³ (A)	DCR max ⁴ (mOhms)	Isolation ^s (Vrms)
CH4659-AL_	4.56 @ 2.5 MHz	0.77	0.50	4.7	40.0	1000
When ordering, pleas	se specify packaging code:		Typic	al Attenuati	011	
	CH4659-ALD		I y pice			
taj re- lea B = Le B = Le nu for ch Inductance shown for 0 Adc on an Agilent/H Current per winding t Current per winding t Current per winding t Current per winding t Current per winding t DCR is specified per Isolation (hipot) meas Electrical specificatio	sured for two seconds. ns at 25°C.	ities less than full ready) or with plify our part nating the need ordering, simply mber from B to D. Hz, 1.0 Vrms, nt. c ambient. This t absolute maxi-	5 10 15 20 25 30 35	Differential	Common mode	
fer to Doc 362 "Solderi	ng Surface Mount Components" be	fore soldering.	40			
1			0.1	1	10 Frequency (MHz)	
			Typic	al Impedanc	e versus Frequ	uencv
770 max CH4659 ,56 max XXXX			10 🖂	F • • • • • • •	1)
2 2 0.670 17,02	4		(Ohm)			
390 91 max	→	0.660 16,76	Impedance (kOhm)			
			0.1		10 Frequency (MHz)	
 0.660 16,76 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	0.060 1,52	sions are in <u>inches</u> mm	Terminati Weight 4 Ambient 1 Storage to Tape and Resistand +260°C, p Moisture 85% relati Packagin 24 mm po	.8 g temperature -40° part temperature emperature Comp reel packaging: -40 ce to soldering hea arts cooled to room Sensitivity Level (ve humidity) g 250/13" reel Pli- cket spacing, 10.1	at Max three 40 secor a temperature between MSL) 1 (unlimited floc astic tape: 32 mm wid	eurrent emp rise) 'C. nd reflows at o cycles or life at <30°C / e, 0.5 mm thick

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-10 Revised 09/09/21 © Coilcraft Inc. 2021

Common Mode Choke – CD1480-BL


Part number ¹	impedance max (kOhms)	Inductanc nom	min	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CD1480-BL_	4.53 @ 2.2 MHz	1.32	0.85	3.5	60.0	1000
. When ordering, plea	se specify packaging code:		Typic	al Attenuatio	n	
ta re le B = L B = L fc c l Inductance shown fc 0 Adc on an Agilent/ Current per winding information is for refe mum ratings. DCR is specified per Isolation (hipot) mea	sured for two seconds.	ities less than full ready) or with plify our part hating the need ordering, simply imber from B to D. Hz, 0.1 Vrms, nt. C ambient. This	V V V V V V V V V V	Differential mode	mmon mode	
Electrical specification	ons at 25°C. ring Surface Mount Components" be	fore soldering.	45 50		10	
0.770 max 9,56 max 2 2 0.670 17,02 0.390 9,91 max	aftInternal code		Typic:	al Impedance	e versus Frequ	
1	→ <u>0.175</u> 4,45		0.1	1	10 requency (MHz)	1
0.660 16,76 Recomn Land P ↓ ↓ ↓ ↓	0.060 1,52	sions are in <u>inches</u> mm	Terminati Weight 4 Ambient 1 Maximum Storage t Tape and Resistand +260°C, p Moisture 85% relati Packagin 24 mm po PCB wasl	5 g temperature -40°C part temperature emperature Comporeel packaging: -40° ce to soldering heat arts cooled to room t Sensitivity Level (N ve humidity) g 250/13" reel Plas cket spacing, 10.1 m	Max three 40 secor emperature between (SL) 1 (unlimited floc stic tape: 32 mm wid m pocket depth (D-202 Method 215 p	current emp rise) °C. nd reflows at cycles or life at <30°C / e, 0.5 mm thick

Coilcraft www.coilcraft.com US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-11 Revised 09/09/21 © Coilcraft Inc. 2021

Common Mode Choke – CE2439L

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-12 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Chokes – CG3333-AL

CG3333-AL 2.27 @ 2.9 MHz 0.90 When ordering, plases escely packaging code: CG3333-AL Packaging: D 127 machine ready role. EM-491 ornbossed plasic trade and table in tape (not machine ready) or with B = Less than full reel. In an effort to simplify our part minothering systems. Collectif is eliminating the need or an AgliorMPP 282B LCR meter or equivalent. Corrent per winding, Isolation injoin measured at 10 KL, 21 Vms, DCR is specified per winding. Electrical specifications at 25°C. There to Dos 28° 2500kmg Suffice on one only and does not represent absolute mach- min ratings. DCR is specified per winding. Electrical specifications at 25°C. There to Dos 28° 2500kmg Suffice on one only and does not represent absolute mach- min ratings. CG33333-AL $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10$	Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH)² min		Irms ³ (A)	DCR max ⁴ (mOhms)	Isolation ^s (Vrms)
Processing: D = 13° machine-ready real. EAA-81 embossed plastic tipe (250 per year full read). Clamitles less than 11 are per full read. Clamitles less tha	CG3333-AL_	2.27 @ 2.9 MHz	0.90	0.59		3.7	50.0	1000
Packaging: D = 13 ^m manine-ready relic EIA-481 embosed plastic tape (260 parts per full read). Quantities less than full ender and trailer (SES champs). B = Loundbeing system: Colorent is eliminating the need) for multiple packaging codes. When ordering, simply change the last letter of your part number from BIO. Inductance shown for each winding, measured at 10 kHz, 0.1 Vms, 0.4 do on an Aglient Meter or equivalent. Current per winding that causes a 40°C rise from 25°C ambient. This information is for reference only and does not represent absolute maxi- mum ratings. DCR is specified per winding. Electrical specified per winding. Stolation fupot measured to first or seconds. Electrical specified per winding. Stolation st 25°C, for to Doc 362 "Soldering Surface Mount Components' balore soldering.	When ordering, pleas	e specify packaging code:		Tvn	ical	Attenuatio	m	
Line productions are in interesting the second production of the sec		CG3333-ALD		- yp	ICUI	menuum	/11	
brunchenging system, collectrat is eliminating the needs of multiple packagening obes. When ordering, simply that causes a dVC rise (nor SC ambient). This information is for reference only and does not represent absolute masure. The measured for two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure of two seconds. Electrical specifications at 25°C. The measure seconds at the second se	tap ree	be (250 parts per full reel). Quant el available: in tape (not machine	ities less than full				Differential mode	
mum ratings. DCR is specified per winding. Isolation (hpot) measured for two seconds. Electrical specifications at 25°C. fer to Dc 382°Soldering Surface Mount Components' before soldering. \overrightarrow{VD} \overrightarrow{VD} $$	nu	mbering system, Coilcraft is elimir multiple packaging codes. When	nating the need ordering, simply	(Bp) uo				
mum ratings. DCR is specified per winding. Isolation (hpot) measured for two seconds. Electrical specifications at 25°C. fer to Dc 382°Soldering Surface Mount Components' before soldering. \overrightarrow{VD} \overrightarrow{VD} $$				20 and				
DCR is specified per winding. Isolation (hipot) measured for two seconds. Electrical specifications at 25°C. fer to Doc 362 "Soldering Surface Mount Components" before soldering. $\overrightarrow{10}$ $\overrightarrow{10}$	information is for refer			9116 25			Common mode	
Electrical specifications at 25°C. for to Doc 362 "Soldering Surface Mount Components" before soldering. $\int_{\frac{70}{150}}^{70} \max_{i} \bigoplus_{i} \bigoplus_{j} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{j} \bigoplus_{i} \bigoplus_{j} \bigoplus_{$	•	winding.		30				
<pre>fer to Doc 362 'Soldering Surface Mount Components' before soldering.</pre>		Ũ						
40 50 50 50 50 50 50 50 50 50 5	•			35				
Frequency (MHz) Frequency (MHz) Freque	efer to Doc 362 "Solderii	ng Surface Mount Components" be	fore soldering.	40				
$\int_{1}^{10} \text{max}} \int_{1}^{10} \text{max}} \int_{1}^{10} \text{max}} \int_{1}^{10} \frac{1}{10005/0.13}} \int_{1}^{10} \frac{1}{10005}} \int_{1}^{10} \frac{1}{10005/0.13}} \int_{1}^{10} \frac{1}{10005}} \int_{1}^{10} \frac{1}{10005/0.13}} \int_{1}^{10} \frac{1}{10005/0.15}} \int_{1}^{10} \frac{1}{10005/0.15}} \int_{1}^{10} \frac{1}{10005/0.15}} \int_{1}^{10} \frac{1}{10005/0.15}} \int_{1}^{10} \frac{1}{10005/0.15}} \int_{1}^{10} \frac{1}{10005/0.1$	2	1			0.1	•		
$\begin{array}{c} 770\\ 17.0\\ $						F	requency (MHz)	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $				Тур	ical	Impedance	e versus Frequ	iency
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	770 CG3333	V		10				
$\underbrace{0.175}_{4,45} + \underbrace{1}_{1,30} + \underbrace{1}_{0.0005/0,13} + \underbrace{0.660}_{16,76} + \underbrace{1}_{0.1} + \underbrace{1}_{0.1$		- Internal code						
$\underbrace{0.175}_{4,45} + \underbrace{1}_{1,30} + \underbrace{1}_{0.005/0,13} + \underbrace{0.660}_{16,76} + \underbrace{1}_{0.1}_{0.1} + \underbrace{1}_{1.1,30} + \underbrace{1}_{0.060} + \underbrace{1}_{1,30} + \underbrace{1}_{0.060} + \underbrace{1}_{1,30} + \underbrace{1}_{0.060} + \underbrace{1}_{1,30} + \underbrace{1}_{0.060} + \underbrace{1}_{1,30} + \underbrace{1}_{0.060} + \underbrace{1}_{0.1} + $								
$\underbrace{0.175}_{4,45} + \underbrace{1}_{1,30} + \underbrace{1}_{0.005/0,13} + \underbrace{0.660}_{16,76} + \underbrace{1}_{0.1}_{0.1} + \underbrace{1}_{1.1,30} + \underbrace{1}_{0.060} + \underbrace{1}_{1,30} + \underbrace{1}_{0.060} + \underbrace{1}_{1,30} + \underbrace{1}_{0.060} + \underbrace{1}_{1,30} + \underbrace{1}_{0.060} + \underbrace{1}_{1,30} + \underbrace{1}_{0.060} + \underbrace{1}_{0.1} + $								
$\underbrace{0.175}_{4,45} + \underbrace{1}_{1,30} + \underbrace{1}_{0.0005/0,13} + \underbrace{0.660}_{16,76} + \underbrace{1}_{0.1} + \underbrace{1}_{0.1$	3	4		Ē				
$\underbrace{0.175}_{4,45} + \underbrace{1}_{1,30} + \underbrace{1}_{0.0005/0,13} + \underbrace{0.660}_{16,76} + \underbrace{1}_{0.1} + \underbrace{1}_{0.1$	 <u>0.670</u> <u>17,02</u> 			ĝ				
$\underbrace{0.175}_{4,45} + \underbrace{1}_{1,30} + \underbrace{1}_{0.0005/0,13} + \underbrace{0.660}_{16,76} + \underbrace{1}_{0.1} + \underbrace{1}_{0.1$				e (F				\mathbb{N}
$\underbrace{0.175}_{4,45} + \underbrace{1}_{1,30} + \underbrace{1}_{0.0005/0,13} + \underbrace{0.660}_{16,76} + \underbrace{1}_{0.1} + \underbrace{1}_{0.1$								
$\underbrace{0.175}_{4,45} + \underbrace{1}_{1,30} + \underbrace{1}_{0.0005/0,13} + \underbrace{0.660}_{16,76} + \underbrace{1}_{0.1} + \underbrace{1}_{0.1$.390			eqa				
$\underbrace{0.175}_{4,45} + \underbrace{1}_{1,30} + \underbrace{1}_{0.0005/0,13} + \underbrace{0.660}_{16,76} + \underbrace{1}_{0.1} + \underbrace{1}_{0.1$	9,91 max			bdu				
$\underbrace{0.175}_{4,45} + 1$ $\underbrace{0.1}_{0,76}$ Recommended $\underbrace{10,76}_{16,76}$ Recommended $\underbrace{10,1}_{0,1}$ $\underbrace{1}_{0,1}$ $\underbrace{1}_{0,$			<u> </u>	<u> </u>				
$\begin{array}{c} 0.175\\\hline 4.45\\\hline \\ 4.45\\\hline \\ 4.45\\\hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	· · · · · · · · · · · · · · · · · · ·	□0.005/0,13						
$\frac{4,45}{16,76}$ $\frac{0.660}{16,76}$ Recommended $\frac{0.060}{1,52}$ $\frac{0.445}{11,30}$ $\frac{1}{10}$ Dimensions are in inches $\frac{0.445}{11,30}$ $\frac{1}{10}$ Dimensions are in inches $\frac{10}{10}$ $\frac{10}{10}$ Core material Ferrite Terminations RoHS compliant tin-silver-copper over copper Weight 4.2 g Ambient temperature -40°C to +85°C with Irms current Maximum part temperature +125°C (ambient + temp rise) Storage temperature -40°C to +80°C Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity) Packaging 250/13″ reel Plastic tape: 32 mm wide, 0.5 mm thick 24 mm pocket spacing, 10.1 mm pocket depth PCB washing Tested to MIL-STD-202 Method 215 plus an additional			16,76					
$\begin{array}{c} 4,45\\ \hline \\ 0.660\\ \hline \\ 16,76\\ \hline \\ \hline$				0.1				
0.660 16,76Recommended Land Pattern 0.060 1,52Core material Ferrite Terminations RoHS compliant tin-silver-copper over copper Weight 4.2 g 4 <td< td=""><td>4,45</td><td>1</td><td></td><td></td><td>0.1</td><td>1</td><td>10</td><td></td></td<>	4,45	1			0.1	1	10	
$\begin{array}{c} \underbrace{0.660}_{16,76} & \underbrace{\text{Recommended}}_{\text{Land Pattern}} & \underbrace{0.060}_{1,52} & \underbrace{0.060}_{1,52} & \underbrace{0.0445}_{11,30} & \xrightarrow{1} & \underbrace{0.445}_{11,30} & \xrightarrow{1} & 1000000000000000000000000000000000000$	↑ <u> </u>	_				F	requency (MHz)	
Weight 4.2 g Mbient temperature -40° C to $+85^{\circ}$ C with Irms current Maximum part temperature $+125^{\circ}$ C (ambient + temp rise) Storage temperature Component: -40° C to $+85^{\circ}$ C. Tape and reel packaging: -40° C to $+80^{\circ}$ C. Tape and reel packaging: $-40^$				Termir	nation	s RoHS compliar	nt tin-silver-copper ove	er copper
$ \begin{array}{c} & & & \\ \hline \\ \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ & & \\ \hline \\ \\ \\ \hline \\ \\ \\ \\$		<u>0.060</u>					to +85°C with Irms c	urrent
Tape and reel packaging: -40°C to +80°C Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C. 85% relative humidity) Packaging 250/13″ reel Plastic tape: 32 mm wide, 0.5 mm thick 24 mm pocket spacing, 10.1 mm pocket depth PCB washing Tested to MIL-STD-202 Method 215 plus an additional		1,52						
Image: Specific determine Dimensions are in mm Image: Specific determine Dimensing are in mo <td< td=""><td> ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td>C.</td></td<>	·							C.
+260°C, parts cooled to room temperature between cycles Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C, 85% relative humidity) Packaging 250/13″ reel Plastic tape: 32 mm wide, 0.5 mm thick 24 mm pocket spacing, 10.1 mm pocket depth PCB washing Tested to MIL-STD-202 Method 215 plus an additiona		5 → ^T Dimen						id reflows at
1 - O 2 85% relative humidity) 1 - O 2 Packaging 250/13" reel Plastic tape: 32 mm wide, 0.5 mm thick 2 - O 3 PCB washing Tested to MIL-STD-202 Method 215 plus an additiona	11,30		11111	+260°0	C, parts	s cooled to room	temperature between	cycles
Packaging 250/13 ⁴ reel Plastic tape: 32 mm wide, 0.5 mm thick 4 0 0 0 0 3 Packaging 250/13 ⁴ reel Plastic tape: 32 mm wide, 0.5 mm thick 24 mm pocket spacing, 10.1 mm pocket depth PCB washing Tested to MIL-STD-202 Method 215 plus an additiona							ISL) 1 (unlimited floo	or life at <30°C
4 C C C C C C C C C C C C C C C C C C C		10-02					stic tape: 32 mm wide	e. 0.5 mm thick
				24 mm	pocke	et spacing, 10.1 m	ım pocket depth	
		40						lus an additiona

Coilcraft www.coilcraft.com US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-13 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Chokes – CG3528-AL

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH)² min	Irms³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CG3528-AL_	6.23 @ 0.72 MHz	3.00	1.95	3.1	42.0	1000
1. When ordering, pleas	e specify packaging code:		Tynic	al Attenuatio	111	
 Packaging: D = 13 tap rec lea B = Le nu for ch Inductance shown for 0 Adc on an Agilent/H Current per winding t information is for refe mum ratings. DCR is specified per Isolation (hipot) meas Electrical specification 	CG3528-ALD "machine-ready reel. EIA-481 en be (250 parts per full reel). Quanti el available: in tape (not machine i ader and trailer (\$25 charge). ss than full reel. In an effort to simp mbering system, Coilcraft is elimin multiple packaging codes. When d ange the last letter of your part null reach winding, measured at 10 kl H 24263B LCR meter or equivaler hat causes a 40°C rise from 25°C rence only and does not represer winding. sured for two seconds. ns at 25°C.	ties less than full ready) or with blify our part lating the need ordering, simply mber from B to D. Hz, 1.0 Vrms, nt. ambient. This t absolute maxi-	0 0 5 10 10 15 20 25 30 35 40 45	Common r		
Refer to Doc 362 "Solderi	ng Surface Mount Components" be	fore soldering.	50		10	10
0.770 19,56 max 0.670 9,91 max 0.175 4,45	Aft Internal code		Typic 10 (working) 10 10 10 10 10 10 10 10 10 10	al Impedance	requency (MHz) e versus Frequency of the second sec	Jency
$\begin{array}{c c} 0.660 \\ 16,76 \\ \hline \\ 16,76 \\ \hline \\ 16,76 \\ \hline \\ 11,30 \\ \hline \\ 11,30 \\ \hline \end{array}$	ttern 0.060 1,52 ↓	sions are in <u>inches</u> mm	Termina Weight Ambient Maximu Storage Tape and Resistar +260°C, Moisture 85% rela Packagi 24 mm p PCB was	terial Ferrite tions RoHS compliar 5.1 g temperature -40°C n part temperature Compo- icel packaging: -40° ice to soldering heat parts cooled to room to Sensitivity Level (N tive humidity) ng 250/13" reel Plat ocket spacing, 10.1 m shing Tested to MIL-S' wash. See Doc787_PC	to +85°C with Irms c +125°C (ambient + te onent: -40°C to +125° C to +80°C t Max three 40 secor temperature between ISL) 1 (unlimited floc stic tape: 32 mm wid im pocket depth TD-202 Method 215 p	eurrent emp rise) C. d reflows at cycles or life at <30°C / e, 0.5 mm thick,

 US
 +1-847-639-6400
 sales@coilcraft.com

 UK
 +44-1236-730595
 sales@coilcraft-europe.com

 Taiwan
 +886-2-2264
 3646
 sales@coilcraft.com.tw

 China
 +86-21-6218
 8074
 sales@coilcraft.com.cn

 Singapore
 + 65-6484
 8412
 sales@coilcraft.com.sg

Document 1194P-14 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CE1759-AL

.	Common mode impedance	Inductanc	<u> </u>	Irms ³	DCR max ⁴	Isolation ⁵
Part number ¹	max (kOhms)	nom	min	(A)	(mOhms)	(Vrms)
CE1759-AL_	4.82 @ 0.99 MHz	0.81	0.52	6.0	14.0	1000
When ordering, pleas	se specify packaging code:		Tv	pical Attenuation	1	
	CE1759-ALD		,			
ta re	"machine-ready reel. EIA-481 en pe (120 parts per full reel). Quantii el available: in tape (not machine r ader and trailer (\$25 charge).	ies less than full		5 Differential mode		
nu foi ch	ess than full reel. In an effort to simp imbering system, Coilcraft is elimin r multiple packaging codes. When a ange the last letter of your part nur	ating the need ordering, simply nber from B to D	n (dB)	15		
	r each winding, measured at 10 kł HP 4263B LCR meter or equivaler		atio	25		
	hat causes a 40°C rise from 25°C rence only and does not represen		Ť.	30		
. DCR is specified per	winding.		-	35		
. Isolation (hipot) meas				40		
Electrical specificatio				45	Common mode	
efer to Doc 362 "Solder	ing Surface Mount Components" bef	ore soldering.		50		
/	Dot indicates pin 1			0.1 1 Fre	10 equency (MHz)	1
.02 6,0 max CE17	59-AL		,	pical Impedance	versus Frequ	iency
	4					
 <u>−</u> 1.22 31,0 	- max ——>		(mhC			
1.512 max			Impedance (kOhm)	1		
<u> </u>	U 0.005/0,13		edaı			
		<- ^{0.598} / _{15,2} →	dml			\rightarrow
\rightarrow $\frac{0.155}{3,94}$						
1						
0.598 Recomm	mended		(0.1 0.1 1	10	1
15,2 Land F				Frequency (MHz)		
	10,16		Cor	e material Ferrite		
<u> </u>		tions are in $\frac{\text{inches}}{\text{mm}}$	Terr Wei	ninations RoHS compliant ght 12.9 g pient temperature -40°C to		
			Max Stor	imum part temperature +1 age temperature Compone and reel packaging: -40°C	I25°C (ambient + te ent: –40°C to +125°	mp rise)

Tape and reel packaging: -40°C to +80°C

Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

Packaging 120/13" reel Plastic tape: 44 mm wide, 0.5 mm thick, 32 mm pocket spacing, 12.4 mm pocket depth

PCB washing Tested to MIL-STD-202 Method 215 plus an additional aqueous wash. See Doc787_PCB_Washing.pdf.

-<u>•000</u> -•000

₩___°2

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-15 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CG3885-AL

Part number ¹	Common mode impedance max (kOhms)	Inductanc nom	e (mH)² min	Irms ³ (A)	DCR max ⁴ (mOhms)	lsolation⁵ (Vrms)
CG3885-AL_	3.11 @ 1.8 MHz	0.47	0.30	10.0	8.0	1000
1. When ordering, plea	se specify packaging code:		Typica	al Attenuation	n	
ta re le B = Lc B = Lc fo C B = Lc C C C C C C C C C C C C C C C C C C C	sured for two seconds.	ies less than full eady) or with blify our part ating the need ordering, simply nber from B to D. at 10 kHz, equivalent. ambient. This t absolute maxi-	0 5 10 15 20 25 30 35	Differential mod		
1			40 L 0.1	1 1 Fr	10 Equency (MHz)	10
$\begin{array}{c c} 1.02 \\ 26,0 \\ 26,0 \\ 2 \\ 2 \\ 2 \\ 2 \\ 31,0 \\ \hline 0.50 \\ 12,7 \\ \hline 0.50 \\ 12,7 \\ \hline 0.60 \\ \hline Recom$	mended	0.598 ← 0.598	Impedance (kOhm)	l Impedance	versus Frequ	
15,24 Land	Pattern <u>¥</u> <u>0.40</u> 10,16		0.1 L 0.1	1 1 Fr	10 equency (MHz)	10
	$10 \qquad \qquad$	sions are in <u>inches</u>	Termination Weight 1 Ambient to Maximum Storage to Tape and r Resistance +260°C, pr Moisture 9 85% relativ Packaging 32 mm poor PCB wash	erial Ferrite ons RoHS compliant 5.3 g emperature -40°C t part temperature + emperature Compor eel packaging: -40°C e to soldering heat arts cooled to room te Sensitivity Level (MS ve humidity) g 120/13" reel Plas cket spacing, 12.4 mr ing Tested to MIL-ST ash. See Doc787_PC	o +85°C with Irms c 125°C (ambient + te ient: $-40°C$ to $+125°$ to $+80°C$ Max three 40 secon emperature between SL) 1 (unlimited floo tic tape: 44 mm wide n pocket depth D-202 Method 215 pl	urrent mp rise) C. d reflows at cycles r life at <30°C / e, 0.5 mm thick,

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-16 Revised 09/09/21

© Coilcraft Inc. 2021

Common Mode Choke – CF2805-AL

Part number ¹	impedance max (kOhms)	Inductane nom	ce (mH) ² min	Irms ³ (A)	DCR max ⁴ (mOhms)	Isolation ^s (Vrms)
CF2805-AL_	3.64 @ 1.9 MHz	0.63	0.40	6.8	14.0	1000
When ordering, pleas	se specify packaging code:		Typic	al Attenuation	nn	
	CF2805-ALD		I ypic			
ta re lea B = Lea	3" machine-ready reel. EIA-481 er pe (120 parts per full reel). Quant el available: in tape (not machine ader and trailer (\$25 charge). ess than full reel. In an effort to sim imbering system, Coilcraft is elimi	ities less than full ready) or with plify our part	5 10	Differential mode		
for	r multiple packaging codes. When hange the last letter of your part nu	ordering, simply imber from B to D.	Attenuation (dB)			
0 Adc on an Agilent/I	r each winding, measured at 10 k HP 4263B LCR meter or equivale	nt.	20 P			
information is for refe mum ratings.	that causes a 40°C rise from 25°C erence only and does not represent 	C ambient. This nt absolute maxi-				
DCR is specified per Isolation (hipot) measured	winding. sured for two seconds.		30			
Electrical specificatio			35 —	Cor	mmon mode	
fer to Doc 362 "Solder	ing Surface Mount Components" be	efore soldering.	40			
			0.1		10 Frequency (MHz)	
02 02 max CF28			Typic	al Impedanc	e versus Frequ	uencv
	XX Y		-) P- 10 ⊏		••••••	
1 22						
31,0	max — >		~			
50 2,7 max			Impedance (kOhm)			
<u> </u>	UU [0.005/0,13]					
		 0.598 15,2 	jed			
\rightarrow $-\frac{0.155}{3.94}$			<u> </u>			N
1 3,94			-			
			-			
0.60 15,2 Recom			0.1			
	Pattern <u>V</u> <u>0.40</u> 10,16		0.1		10 Frequency (MHz)	
L 1.	10 +		Core ma	terial Ferrite		
27	.94	isions are in inches	Terminat	ions RoHS complia	nt tin-silver-copper ov	er copper
	Dimen	mm	Weight 1 Ambient		to +85°C with Irms c	current
			Maximur	n part temperature	+125°C (ambient + te	emp rise)
				temperature Compo reel packaging: –40	onent: –40°C to +125° °C to +80°C	·U.
	10-02		Resistan	ce to soldering hea	t Max three 40 secor temperature between	nd reflows at
	30-0-0-4		Moisture		MSL) 1 (unlimited floc	
			Packagir 32 mm po	ng 120/13" reel Pla ocket spacing, 12.4 n	astic tape: 44 mm wid nm pocket depth 3TD-202 Method 215 p	

US +1-847-639-6400 sales@coilcraft.com UK +44-1236-730595 sales@coilcraft-europe.com Taiwan +886-2-2264 3646 sales@coilcraft.com.tw China +86-21-6218 8074 sales@coilcraft.com.cn Singapore + 65-6484 8412 sales@coilcraft.com.sg

Document 1194P-17 Revised 09/09/21 © Coilcraft Inc. 2021